题意:
给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望。
思路:
一个数可以表示为质数的幂次的积。所以对于这个数,我们可以分别讨论他的质因子的情况。
假设质因子x的指数是j,那么这个质因子下一步可以变到的情况就有(j+1)种可能,利用概率DP算出k步操作后每个x的不同幂次的概率,然后求出期望。
把每个质因子的情况算出来的期望乘起来即可。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9+7; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 1e4+9; ll dp[maxn][105],inv[102]; ll n; int k; ll cal(ll a,int n){ memset(dp, 0, sizeof(dp)); dp[0][n] = 1; for(int i=0; i<k; i++){ for(int j=0; j<=n; j++){ for(int t=0; t<=j; t++){ dp[i+1][t] =(dp[i+1][t] + dp[i][j] * inv[j+1]%mod)%mod; } } } ll d = 1,sum = 0; for(int i=0; i<=n; i++){ sum = (sum + d * dp[k][i])%mod; d = d * a % mod; } return sum; } int main(){ cin>>n>>k; ll ans = 1; inv[1] = 1; for(int i=2; i<=100; i++){ inv[i] = (mod - mod/i)*inv[mod%i]%mod; } for(ll i=2; i*i<=n; i++){ if(n%i==0){ int cnt = 0; while(n%i==0) n/=i,cnt++; ans = ans * cal(i, cnt)%mod; } } if(n>1) ans = ans * cal(n, 1)%mod; cout<<ans<<endl; return 0; }