感觉费用流比网络流的图更难想到,要更大胆。
首先由于日期是连续的,所以图中的点是横向排列的。
这道题有点绕道走的意思,由于一类志愿者是可以服务于一段时间,那我们给第i天连出去多条边,第一条边是流向i+1点的,容量为inf-a【i】,费用为0,
若有i 到 其他点t,费用为w, 则连一条(i, t+1, inf,w)的边
跑一遍费用流,算出结果
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> /* ⊂_ヽ \\ Λ_Λ 来了老弟 \('ㅅ') > ⌒ヽ / へ\ / / \\ レ ノ ヽ_つ / / / /| ( (ヽ | |、\ | 丿 \ ⌒) | | ) / 'ノ ) Lノ */ using namespace std; #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; //typedef __int128 bll; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ' ' #define boost ios::sync_with_stdio(false);cin.tie(0) #define rep(a, b, c) for(int a = (b); a <= (c); ++ a) #define max3(a,b,c) max(max(a,b), c); #define min3(a,b,c) min(min(a,b), c); const ll oo = 1ll<<17; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const ll mod = 2147483648; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } inline void cmax(int &x,int y){if(x<y)x=y;} inline void cmax(ll &x,ll y){if(x<y)x=y;} inline void cmin(int &x,int y){if(x>y)x=y;} inline void cmin(ll &x,ll y){if(x>y)x=y;} /*-----------------------showtime----------------------*/ const int maxn = 1e3+9; int a[maxn]; struct E{ int v,val,cost; int nxt; }edge[maxn*maxn]; int head[maxn],gtot; void addedge(int u,int v,int val,int cost){ edge[gtot].v = v; edge[gtot].val = val; edge[gtot].cost = cost; edge[gtot].nxt = head[u]; head[u] = gtot++; edge[gtot].v = u; edge[gtot].val = 0; edge[gtot].cost = -cost; edge[gtot].nxt = head[v]; head[v] = gtot++; } int dis[maxn],pre[maxn],vis[maxn],path[maxn]; bool spfa(int s,int t){ memset(dis,inf, sizeof(dis)); memset(vis, 0, sizeof(vis)); memset(pre, -1, sizeof(pre)); dis[s] = 0; vis[s] = 1; queue<int>que; que.push(s); while(!que.empty()){ int u = que.front(); que.pop(); vis[u] = 0; for(int i=head[u]; ~i; i=edge[i].nxt){ int v = edge[i].v, val = edge[i].val, cost = edge[i].cost; if(val > 0 && dis[v] > dis[u] + cost){ dis[v] = dis[u] + cost; pre[v] = u; path[v] = i; if(vis[v] == 0){ vis[v] = 1; que.push(v); } } } } return pre[t] != -1; } int mcmf(int s,int t){ int flow = 0, cost = 0; while(spfa(s, t)){ int f = inf; for(int i=t; i!=s; i=pre[i]){ f = min(f, edge[path[i]].val); } flow += f; cost += f * dis[t]; for(int i=t; i!=s; i=pre[i]){ edge[path[i]].val -= f; edge[path[i]^1].val += f; } } return cost; } int main(){ memset(head, -1, sizeof(head)); int n,m; scanf("%d%d", &n, &m); rep(i, 1, n) scanf("%d", &a[i]); int s = 0, t = n+2; addedge(s, 1, inf, 0); addedge(n+1, t, inf, 0); rep(i, 1, n) addedge(i, i+1, inf - a[i], 0); while(m --) { int u,v,w; scanf("%d%d%d", &u, &v, &w); addedge(u, v+1, inf, w); } printf("%d ", mcmf(s, t)); return 0; }