zoukankan      html  css  js  c++  java
  • 2019NC#1

    LINK

    B Integration

    题意:

    给定$a_1,a_2,...,a_n$, 计算 $$frac{1}{π}int_{0}^{infty}frac{1}{prodlimits_{i=1}^{n}(a_i^2+x^2)}dx$$ 在mod(1E9+7)意义下的答案。

    思路:

    裂项化乘为和的方法

    可以得到

    $$frac{1}{2}sum_{i=1}^n quad  frac{1}{prod_{j=1,j e i}^n quad a_j^2 - a_i^2} quad frac{1}{a_i}$$

    参考:https://www.cnblogs.com/Dillonh/p/11209476.html

     

    #include <iostream>
    #include <vector>
    #include <queue>
    using namespace std;
    #define pb push_back
    #define fi first
    #define se second
    #define debug(x) cerr<<#x << " := " << x << endl;
    #define bug cerr<<"-----------------------"<<endl;
    #define FOR(a, b, c) for(int a = b; a <= c; ++ a)
    
    typedef long long ll;
    typedef long double ld;
    typedef pair<int, int> pii;
    typedef pair<ll, ll> pll;
    
    
    template<class T> void _R(T &x) { cin >> x; }
    void _R(int &x) { scanf("%d", &x); }
    void _R(ll &x) { scanf("%lld", &x); }
    void _R(double &x) { scanf("%lf", &x); }
    void _R(char &x) { scanf(" %c", &x); }
    void _R(char *x) { scanf("%s", x); }
    void R() {}
    template<class T, class... U> void R(T &head, U &... tail) { _R(head); R(tail...); }
    
    
    template<typename T>
    inline T read(T&x){
        x=0;int f=0;char ch=getchar();
        while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
        while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
        return x=f?-x:x;
    }
    
    const int inf = 0x3f3f3f3f;
    
    const int mod = 1e9+7;
    
    /**********showtime************/
                const int maxn = 1e3+9;
                int a[maxn];
                ll ksm(ll a, ll b) {
                    ll res = 1;
                    while(b > 0) {
                        if(b & 1) res = res * a % mod;
                        a = a * a % mod;
                        b = b >> 1;
                    }
                    return res;
                }
    int main(){
                int n;  
                while(~scanf("%d", &n)){
                    for(int i=1; i<=n; i++) scanf("%d", &a[i]);
                    ll sum = 0;
                    for(int i=1; i<=n; i++) {
    
                        ll tmp = 1;
                        for(int j=1; j<=n; j++) {
                            if(i == j) continue;
                            ll s = (1ll*a[j] * a[j]%mod - 1ll*a[i]*a[i]%mod + mod)%mod;
                            tmp = tmp * ksm(s, mod-2) % mod;
                        }
                        tmp = tmp * ksm(a[i], mod-2) % mod;
                        sum = (sum + tmp )% mod;
                    }
                    sum = sum * ksm(2, mod-2) % mod;
                    printf("%lld
    ", sum);
                }
                return 0;
    }
    View Code

    C Euclidean Distance

    贪心或者拉格朗日乘子法

    D Parity of Tuples

    fwt

    G Substrings 2

    字符串

    H XOR

    线性基

    I Points Division

    DP,线段树,折线

  • 相关阅读:
    个人觉得在前台比较通用的校验的提示方法
    平时面试总结
    sturts2批量导入excel中的信息入库大致代码
    在B/S系统中得到spring的ApplicationContext对象的一点小技巧
    Oracle同义词创建及其作用
    Oracle中创建dblink的方法
    真实项目中struts2 导出excel文件
    十二款jQuery插件(编辑器,图片,验证等)
    华丽到暴表的网站 cnn ecosphere
    Mysql 临时表
  • 原文地址:https://www.cnblogs.com/ckxkexing/p/11210441.html
Copyright © 2011-2022 走看看