题意:
a,b个小正方形构造一个矩形,大小为(a+b),并且要求其中要么a个小正方形是矩形,要么b个小正方形是矩形。
思路:
之前在想要分a,b是否为奇数讨论,后来发现根本不需要。只用枚举(a+b)大小的矩形的边长,并暴力判断(注意暴力判断的顺序)能否成立,更新答案。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <iomanip> #include <cstdlib> #include <cstdio> #include <string> #include <vector> #include <bitset> #include <cctype> #include <queue> #include <cmath> #include <list> #include <map> #include <set> //#include <unordered_map> //#include <unordered_set> //#include<ext/pb_ds/assoc_container.hpp> //#include<ext/pb_ds/hash_policy.hpp> using namespace std; //#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int ,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q //__gnu_pbds::cc_hash_table<int,int>ret[11]; //这是很快的hash_map #define fi first #define se second //#define endl ' ' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFFLL; //2147483647 const ll nmos = 0x80000000LL; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3fLL; //18 const double PI=acos(-1.0); template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ ll a,b, sum; bool check(ll x,ll y){ for(ll i=x; i>=1; i--){ if(a%i == 0 && a/i <= y)return true; if(b%i == 0 && b/i <= y)return true; } return false; } int main(){ cin>>a>>b; sum = a + b; ll ans = inff; for(ll i=1ll; i * i <= sum; i++){ if(sum % i == 0){ ll x = i, y = sum/i; if(check(x,y)) { ans = min(ans, 2ll*(x + y)); } } } cout<<ans<<endl; return 0; }