zoukankan      html  css  js  c++  java
  • EM算法

    1.一般概念介绍 

    最大期望算法Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。

    在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

     

    2. Jensen不等式

          回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,clip_image002,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(clip_image004),那么f是凸函数。如果clip_image006或者clip_image008,那么称f是严格凸函数。

          Jensen不等式表述如下:

          如果f是凸函数,X是随机变量,那么

          clip_image010

          特别地,如果f是严格凸函数,那么clip_image012当且仅当clip_image014,也就是说X是常量。

          这里我们将clip_image016简写为clip_image018

          如果用图表示会很清晰:

          clip_image019

          图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到clip_image010[1]成立。

          当f是(严格)凹函数当且仅当-f是(严格)凸函数。

          Jensen不等式应用于凹函数时,不等号方向反向,也就是clip_image021

     

     

     

    3.EM算法

     给定的训练样本clip_image023,样例间独立,我们想找到每个样例隐含的类别z,能使得p(x,z)最大。p(x,z)的最大似然估计如下:

          clip_image024

          第一步是对极大似然取对数,第二步是对每个样例的每个可能类别z求联合分布概率和。但是直接求clip_image026一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。

          EM是一种解决存在隐含变量优化问题的有效方法。竟然不能直接最大化clip_image028,我们可以不断地建立clip_image030的下界(E步),然后优化下界(M步)。这句话比较抽象,看下面的。

          对于每一个样例i,让clip_image032表示该样例隐含变量z的某种分布,clip_image032[1]满足的条件是clip_image034。(如果z是连续性的,那么clip_image032[2]是概率密度函数,需要将求和符号换做积分符号)。比如要将班上学生聚类,假设隐藏变量z是身高,那么就是连续的高斯分布。如果按照隐藏变量是男女,那么就是伯努利分布了。

    可以由前面阐述的内容得到下面的公式:

          clip_image035

          (1)到(2)比较直接,就是分子分母同乘以一个相等的函数。(2)到(3)利用了Jensen不等式,考虑到clip_image037是凹函数(二阶导数小于0),而且

          clip_image038

          就是clip_image039的期望(回想期望公式中的Lazy Statistician规则)   

          设Y是随机变量X的函数clip_image041(g是连续函数),那么

          (1) X是离散型随机变量,它的分布律为clip_image043,k=1,2,…。若clip_image045绝对收敛,则有

          clip_image047

          (2) X是连续型随机变量,它的概率密度为clip_image049,若clip_image051绝对收敛,则有

          clip_image053

          对应于上述问题,Y是clip_image039[1],X是clip_image055clip_image057clip_image059,g是clip_image055[1]clip_image039[2]的映射。这样解释了式子(2)中的期望,再根据凹函数时的Jensen不等式:

          clip_image060

    可以得到(3)。

          这个过程可以看作是对clip_image028[1]求了下界。对于clip_image032[3]的选择,有多种可能,那种更好的?假设clip_image026[1]已经给定,那么clip_image028[2]的值就决定于clip_image057[1]clip_image062了。我们可以通过调整这两个概率使下界不断上升,以逼近clip_image028[3]的真实值,那么什么时候算是调整好了呢?当不等式变成等式时,说明我们调整后的概率能够等价于clip_image028[4]了。按照这个思路,我们要找到等式成立的条件。根据Jensen不等式,要想让等式成立,需要让随机变量变成常数值,这里得到:

          clip_image063

          c为常数,不依赖于clip_image065。对此式子做进一步推导,我们知道clip_image067,那么也就有clip_image069,(多个等式分子分母相加不变,这个认为每个样例的两个概率比值都是c),那么有下式:

          clip_image070

          至此,我们推出了在固定其他参数clip_image026[2]后,clip_image072的计算公式就是后验概率,解决了clip_image072[1]如何选择的问题。这一步就是E步,建立clip_image028[5]的下界。接下来的M步,就是在给定clip_image072[2]后,调整clip_image026[3],去极大化clip_image028[6]的下界(在固定clip_image072[3]后,下界还可以调整的更大)。那么一般的EM算法的步骤如下:   

    循环重复直到收敛 {

          (E步)对于每一个i,计算

                      clip_image074

          (M步)计算

                     clip_image075

    }

          这里顺便提一下其中的p的计算式可以实例化 例如p的公式可以被 贝叶斯公式替代 另外对于z和clip_image026[3]的初始值,有的资料给出的办法是第一次猜测隐含类别变量z,对于clip_image026可以复给一个随意的初始值

          那么究竟怎么确保EM收敛?假定clip_image077clip_image079是EM第t次和t+1次迭代后的结果。如果我们证明了clip_image081,也就是说极大似然估计单调增加,那么最终我们会到达最大似然估计的最大值。下面来证明,选定clip_image077[1]后,我们得到E步

          clip_image083

          这一步保证了在给定clip_image077[2]时,Jensen不等式中的等式成立,也就是

          clip_image084

          然后进行M步,固定clip_image086,并将clip_image088视作变量,对上面的clip_image090求导后,得到clip_image092,这样经过一些推导会有以下式子成立:

          clip_image093

          解释第(4)步,得到clip_image092[1]时,只是最大化clip_image090[1],也就是clip_image095的下界,而没有使等式成立,等式成立只有是在固定clip_image026[4],并按E步得到clip_image097时才能成立。

          况且根据我们前面得到的下式,对于所有的clip_image097[1]clip_image026[5]都成立

          clip_image098

          第(5)步利用了M步的定义,M步就是将clip_image088[1]调整到clip_image100,使得下界最大化。因此(5)成立,(6)是之前的等式结果。

          这样就证明了clip_image102会单调增加。一种收敛方法是clip_image102[1]不再变化,还有一种就是变化幅度很小。

          再次解释一下(4)、(5)、(6)。首先(4)对所有的参数都满足,而其等式成立条件只是在固定clip_image026[6],并调整好Q时成立,而第(4)步只是固定Q,调整clip_image026[7],不能保证等式一定成立。(4)到(5)就是M步的定义,(5)到(6)是前面E步所保证等式成立条件。也就是说E步会将下界拉到与clip_image102[2]一个特定值(这里clip_image088[2])一样的高度,而此时发现下界仍然可以上升,因此经过M步后,下界又被拉升,但达不到与clip_image102[3]另外一个特定值一样的高度,之后E步又将下界拉到与这个特定值一样的高度,重复下去,直到最大值。

          如果我们定义

          clip_image103

          从前面的推导中我们知道clip_image105,EM可以看作是J的坐标上升法,E步固定clip_image026[8],优化clip_image107,M步固定clip_image107[1]优化clip_image026[9]

  • 相关阅读:
    Character 比较注意先要转换成字符串类型
    ibats注意
    初试体验java多线程
    解压jar
    Velocity语法--转载
    python 批量请求url
    java.lang.NoClassDefFoundError
    疑问
    sql常用语句--转载
    Spring AOP高级——源码实现(3)AopProxy代理对象之JDK动态代理的创建过程
  • 原文地址:https://www.cnblogs.com/cl1024cl/p/6205287.html
Copyright © 2011-2022 走看看