zoukankan      html  css  js  c++  java
  • Mahout系列之-----相似度

         Mahout推荐系统中有许多相似度实现,这些组件实现了计算不能User之间或Item之间的相似度。对于数据量以及数据类型不同的数据源,需要不同的相似度计算方法来提高推荐性能,在mahout提供了大量用于计算相似度的组件,这些组件分别实现了不同的相似度计算方。

       User 相似度:    

    1

    Item 相似度:

    2

    皮尔森相关度

    类名:PearsonCorrelationSimilarity

    原理:用来反映两个变量线性相关程度的统计量

    范围:[-1,1],绝对值越大,说明相关性越强,负相关对于推荐的意义小。

    说明:1、 不考虑重叠的数量;2、 如果只有一项重叠,无法计算相似性(计算过程被除数有n-1);3、 如果重叠的值都相等,也无法计算相似性(标准差为0,做除数)。

        该相似度并不是最好的选择,也不是最坏的选择,只是因为其容易理解,在早期研究中经常被提起。使用Pearson线性相关系数必须假设数据是成对地从正态分布中取得的,并且数据至少在逻辑范畴内必须是等间距的数据。Mahout中,为皮尔森相关计算提供了一个扩展,通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。

    欧式距离相似度

    类名:EuclideanDistanceSimilarity

    原理:利用欧式距离d定义的相似度s,s=1 / (1+d)。

    范围:[0,1],值越大,说明d越小,也就是距离越近,则相似度越大。

    说明:同皮尔森相似度一样,该相似度也没有考虑重叠数对结果的影响,同样地,Mahout通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。

    余弦相似度

    类名:PearsonCorrelationSimilarity和UncenteredCosineSimilarity

    原理:多维空间两点与所设定的点形成夹角的余弦值。

    范围:[-1,1],值越大,说明夹角越大,两点相距就越远,相似度就越小。

    说明:在数学表达中,如果对两个项的属性进行了数据中心化,计算出来的余弦相似度和皮尔森相似度是一样的,在mahout中,实现了数据中心化的过程,所以皮尔森相似度值也是数据中心化后的余弦相似度。另外在新版本中,Mahout提供了UncenteredCosineSimilarity类作为计算非中心化数据的余弦相似度。

    Spearman秩相关系数

    类名:SpearmanCorrelationSimilarity

    原理:Spearman秩相关系数通常被认为是排列后的变量之间的Pearson线性相关系数。

    范围:{-1.0,1.0},当一致时为1.0,不一致时为-1.0。

    说明:计算非常慢,有大量排序。针对推荐系统中的数据集来讲,用Spearman秩相关系数作为相似度量是不合适的。

    曼哈顿距离

    类名:CityBlockSimilarity

    原理:曼哈顿距离的实现,同欧式距离相似,都是用于多维数据空间距离的测度

    范围:[0,1],同欧式距离一致,值越小,说明距离值越大,相似度越大。

    说明:比欧式距离计算量少,性能相对高。

    Tanimoto系数

    类名:TanimotoCoefficientSimilarity

    原理:又名广义Jaccard系数,是对Jaccard系数的扩展,等式为

    范围:[0,1],完全重叠时为1,无重叠项时为0,越接近1说明越相似。

    说明:处理无打分的偏好数据。

    对数似然相似度

    类名:LogLikelihoodSimilarity

    原理:重叠的个数,不重叠的个数,都没有的个数

    范围:具体可去百度文库中查找论文《Accurate Methods for the Statistics of Surprise and Coincidence》

    说明:处理无打分的偏好数据,比Tanimoto系数的计算方法更为智能。


  • 相关阅读:
    《影响力》为你剖析营销的魅力 伍卓钧
    教你如何掌控别人 伍卓钧
    针对面向对象接口最诡异的解读 伍卓钧
    2011年终总结 伍卓钧
    打造阅读Linux源代码利器 伍卓钧
    系统运维的那些事文件权限 伍卓钧
    风扇控制系统最终版 伍卓钧
    码农小手册1 伍卓钧
    码农充电站进程与线程 伍卓钧
    面霸不容易且面且珍惜 伍卓钧
  • 原文地址:https://www.cnblogs.com/cl1024cl/p/6205316.html
Copyright © 2011-2022 走看看