这篇的主题本应该放在最初的几篇。讨论的是并发编程最基础的几个核心概念。可是这几个概念又牵扯到非常多的实际技术。比方Java内存模型。各种锁的实现,volatile的实现。原子变量等等,每个都可以展开写非常多,尤其是Java内存模型,网上已经可以有非常几篇不错的文章,临时不想反复造轮子。这里推荐几篇Jave内存模型的资料:
1. JSR-133 FAQ
3. Synchronization and Java Memory Model
4.
深入理解Java内存模型
我之前也写了一个Java内存模型的PPT: http://share.csdn.net/slides/7916
以下说说并发编程关注的几个核心概念。
关注一个并发问题,有3个主要的关注点:
1. 安全性。也就是正确性。指的是程序在并发情况下运行的结果和预期一致
2. 活跃性,比方死锁。活锁
3. 性能,降低上下文切换。降低内核调用。降低一致性流量等等
安全性问题是首要解决的问题。保证程序的线程安全。实际上就是对多线程的同步,而多线程的同步本质上就是多线程通信的问题。操作系统里面定义了几种进程通信的方式:
1. 管道 pipeline
2. 信号 signal
3. 消息队列 messsage queue
4. 共享内存 shared memory
5. 信号量 semaphore
6. Socket
Java里面进行多线程通信的主要方式就是共享内存的方式,共享内存基本的关注点有两个:可见性和有序性。加上复合操作的原子性。我们能够觉得Java的线程安全性问题主要关注点有3个
1. 可见性
2. 有序性
3. 原子性
Java内存模型JMM攻克了可见性和有序性的问题,而锁攻克了原子性的问题。
至于Java内存模型怎样解决可见性和有序性的问题,以后会说到,感兴趣的同学能够看看上面的资料。
可见性底层的实现是通过加内存屏障实现的:
1. 写变量后加写屏障。保证CPU写缓冲区的值强制刷新回主内存
2. 读变量之前加读屏障。使缓存失效,从而强制从主内存读取变量最新值
写volatile变量 = 进入锁
读volatile变量 = 释放锁
1. 最常见的就是保证多线程运行的串行顺序
2. 防止重排序引起的问题
3. 程序运行的先后顺序。比方JMM定义的一些Happens-before规则
重排序的问题是一个单独的主题。常见的重排序有3个层面:
1. 编译级别的重排序,比方编译器的优化
2. 指令级重排序,比方CPU指令运行的重排序
3. 内存系统的重排序,比方缓存和读写缓冲区导致的重排序
原子性是指某个(些)操作在语意上是原子的。比方读操作。写操作,CAS(compare and set)操作在机器指令级别是原子的,又比方一些复合操作在语义上也是原子的,如先检查后操作if(xxx == null){}
有个专有名词竞态条件来描写叙述原子性的问题。
竞态条件(racing condition)是指某个操作因为不同的运行时序而出现不同的结果,比方先检查后操作。
volatile变量仅仅保证了可见性,不保证原子性, 比方a++这样的操作在编译后实际是多条语句。比方先读a的值,再加1操作。再写操作。运行了3个原子操作,假设并发情况下,另外一个线程非常有可能读到了中间状态,从而导致程序语意上的不对。
所以a++实际是一个复合操作。
加锁能够保证复合语句的原子性。sychronized能够保证多条语句在synchronized块中语意上是原子的。
显式锁保证临界区的原子性。
原子变量也封装了对变量的原子操作。非堵塞容器也提供了原子操作的接口,比方putIfAbsent。
理解可见性,有序性。原子性是理解并发编程的一个重要基础