zoukankan      html  css  js  c++  java
  • HDU 3362 Fix(状压DP)

    Fix

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 916    Accepted Submission(s): 309


    Problem Description
    There are a few points on a plane, and some are fixed on the plane, some are not. We want to connect these points by some sticks so that all the points are fixed on the plane. Of course, we want to know the minimum length of the sum of the sticks.

    As in the images, the black points are fixed on the plane and red ones are not, which need to be fixed by sticks.
    All the points in the left image have been fixed. But the middle one is not, which we need add one stick to fix those four points (the right image shows that stick). Triangle is steady, isn’t it?


     

    Input
    The input consists of multiply test cases. The first line of each test case contains one integer, n (1 <= n <= 18), which is the number of points. The next n lines, each line consists of three integers, x, y, c (0 <= x, y < 100). (x, y) indicate the coordinate of one point; c = 1 indicates this point is fixed; c = 0 indicates this point is not fixed. You can assume that no two points have the same coordinate.
    The last test case is followed by a line containing one zero, which means the end of the input.
     

    Output
    Output the minimum length with six factional digits for each test case in a single line. If you cannot fix all the points, then output “No Solution”.
     

    Sample Input
    4 0 0 1 1 0 1 0 1 0 1 1 0 3 0 0 1 1 1 0 2 2 0 0
     

    Sample Output
    4.414214 No Solution
     

    Source

    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <set>
    #include <algorithm>
    #define LL long long
    using namespace std;
    const int MAXN = 20;
    const double INF = 100000000.0;
    struct Node
    {
        int x, y;
    }Point[MAXN];
    int fix[MAXN], start, target, N;
    double dis[MAXN], dp[1<<21];
    double Dis(int a, int b)
    {
        double x = (double)(Point[a].x - Point[b].x);
        double y = (double)(Point[a].y - Point[b].y);
        return sqrt(x * x + y * y);
    }
    double solve(int s, int x)
    {
        int m = 0;
        for(int i=0;i<N;i++) if(s & (1 << i))
           dis[m++] = Dis(i, x);
        sort(dis, dis + m);
       // cout << m << endl;
        if(m < 2) return -1;
        double ans = dis[0] + dis[1];
        return ans;
    }
    int main()
    {
        while(scanf("%d", &N)!=EOF && N)
        {
            start = target = 0;
            for(int i=0;i<N;i++)
            {
                scanf("%d%d%d", &Point[i].x, &Point[i].y, &fix[i]);
                if(fix[i]) start |= (1 << i);
                target |= (1 << i);
            }
            for(int i=0;i<=target;i++) dp[i] = INF;
            dp[start] = 0;
            for(int s=start;s<=target;s++)
            {
                if(dp[s] == INF) continue;
                for(int i=0;i<N;i++)
                {
                    if(!(s & (1 << i)))
                    {
                        double res = solve(s, i);
                        //cout << s << ' ' << i << ' ' << res << endl;
                        if(res >= 0) dp[s|(1<<i)] = min(dp[s|(1<<i)], dp[s] + res);
                       // cout << dp[s] << ' ' << dp[s|(1<<i)] << endl;
                    }
                }
            }
            if(dp[target] >= INF) printf("No Solution
    ");
            else printf("%.6lf
    ", dp[target]);
        }
        return 0;
    }


  • 相关阅读:
    数据结构解决哈希冲突方法回顾
    java线程池大小分配方案
    java线程池工作原理
    非对称密码体制
    java ThreadLocal
    jvm配置参数
    定时器深入讲解
    开发笔记三
    开发笔记二
    js证书批量生成与打包下载
  • 原文地址:https://www.cnblogs.com/claireyuancy/p/7131956.html
Copyright © 2011-2022 走看看