zoukankan      html  css  js  c++  java
  • hdu 5358 First One 2015多校联合训练赛#6 枚举

    First One

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 142    Accepted Submission(s): 37


    Problem Description
    soda has an integer array a1,a2,,an. Let S(i,j) be the sum of ai,ai+1,,aj. Now soda wants to know the value below:
    i=1nj=in(log2S(i,j)+1)×(i+j)

    Note: In this problem, you can consider log20 as 0.
     

    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains an integer n (1n105), the number of integers in the array.
    The next line contains n integers a1,a2,,an (0ai105).
     

    Output
    For each test case, output the value.
     

    Sample Input
    1 2 1 1
     

    Sample Output
    12
     

    Source
     

    因为下取整log(sum)的值是非常小的。

    能够枚举每一个位置为開始位置,然后枚举每一个log(sum)仅仅需36*n的。

    中间j的累加和

    推公式就可以。

    可是找log值同样的区间,须要用log(sum)*n的复杂度预处理出来,假设每次二分位置会超时。



    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    #define ll long long
    #define maxn 100007
    ll num[maxn];
    ll pos[maxn][36];
    
    int main(){
        int t;
        scanf("%d",&t);
        while(t--){
            int n;
            scanf("%d",&n);
            for(int i = 0;i < n; i++){
                scanf("%I64d",&num[i]);
            }
    
            num[n] = 0;
            for(ll i = 0;i < 36; i++){
                ll di = 1LL<<(i+1);
                ll su = num[0];
                int p = 0;
                for(int j = 0;j < n; j++){
                    if(j) su -= num[j-1];
                    while(su < di && p < n){
                        su += num[++p];
                    }
                    pos[j][i] = p;
                }
            }
    
            ll ans = 0,res;
            for(int i = 0;i < n; i++){
                ll p = i,q;
                for(int j = 0;j < 36 ;j ++){
                    q = pos[i][j];
                    res = (j+1)*((i+1)*(q-p)+(p+q+1)*(q-p)/2);
                    ans += res;
                    p = q;
                }
            }
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    


  • 相关阅读:
    几种编辑器的markdown-toc生成目录在github上的表现
    Docker 镜像文件的导入和导出
    Python 的 os 与 sys 模块
    IPython 自动重载魔术
    一种新的python局部调试手法
    Python 动态从文件中导入类或函数的方法
    python2中新式类和经典类的多重继承调用顺序
    Python运行目录或压缩文件
    子类化内置类型
    Django 数据库访问性能优化
  • 原文地址:https://www.cnblogs.com/claireyuancy/p/7151945.html
Copyright © 2011-2022 走看看