Integer Partition
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 524 Accepted Submission(s): 238
Problem Description
Given n, k, calculate the number of different (unordered) partitions of n such that no part is repeated k or more times.
Input
First line, number of test cases, T.
Following are T lines. Each line contains two numbers, n and k.
1<=n,k,T<=105
Following are T lines. Each line contains two numbers, n and k.
1<=n,k,T<=105
Output
T lines, each line contains answer to the responding test case.
Since the numbers can be very large, you should output them modulo 109+7.
Since the numbers can be very large, you should output them modulo 109+7.
Sample Input
4 4 2 4 3 4 4 4 5
Sample Output
2 4 4 5
Source
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4658
题意:问一个数n能被拆分成多少种方法,且每一种方法里数字反复个数不能超过k(等于k)。
五边形数定理续。结合上一题(hdu4651),先打表,然后把大于k的个数剪掉;

好吧。再啰嗦一遍:
用了五边形数定理以及生成函数,然而我看懂了生成函数怎么搞这题却不知道为啥生成函数是五边形数形式= =
首先观察以下的图片:
非常easy我们能够发现用这样的方式构造N个五边形(如果一个点也算一个五边形)。须要点的个数为:
接下来我们来看一下数拆分。
提问:将一个正整数
非常easy我们能够构造一个多项式:
能够发现N的数拆分的方案数正相应着多项式展开后
考虑例如以下等式:
因此我们有:
当中上式等式左边是欧拉函数
即:
欧拉函数
当中的x的指数正相应着广义五边形数!
|
|
0 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | … |
|---|---|---|---|---|---|---|---|---|---|---|
|
|
0 | 1 | 2 | 5 | 7 | 12 | 15 | 22 | 26 | … |
如今我们要计算
所以:
因为对于满足
上面我们说明的是不带限制的数拆分,如今我们给定一个限制:拆分出来的每种数的个数不能大于等于k(这也是本题的要求)。
类似的,我们考虑生成函数:
展开
然后可得:
令
一開始超时了。不然把取余的部分改动了下就过了。。
。
转载请注明出处:http://blog.csdn.net/u010579068
#include<iostream>
#include<cstdio>
#define NN 100005
#define LL __int64
#define mod 1000000007
using namespace std;
LL wu[NN],pa[NN];
void init()
{
pa[0]=1;
pa[1]=1;
pa[2]=2;
pa[3]=3;
LL ca=0;
for(LL i=1; i<=100000/2; i++)
{
wu[ca++]=i*(3*i-1)/2;
wu[ca++]=i*(3*i+1)/2;
if(wu[ca-1]>100000) break;
}
for(LL i=4; i<=100000; i++)
{
pa[i]=(pa[i-1]+pa[i-2])%mod;
ca=1;
while(wu[2*ca]<=i)
{
if(ca&1)
{
pa[i]=(pa[i]-pa[i-wu[2*ca]]);
pa[i]=(pa[i]%mod+mod)%mod;
if(wu[2*ca+1]<=i)
pa[i]=(pa[i]-pa[i-wu[2*ca+1]]),pa[i]=(pa[i]%mod+mod)%mod;
}
else
{
pa[i]=(pa[i]+pa[i-wu[2*ca]]);
pa[i]=(pa[i]%mod+mod)%mod;
if(wu[2*ca+1]<=i)
pa[i]=(pa[i]+pa[i-wu[2*ca+1]]),pa[i]=(pa[i]%mod+mod)%mod;
}
ca++;
}
}
}
LL work(int n,int k)
{
LL ans=pa[n];
LL ca=0;
while(k*wu[2*ca]<=n)
{
if(ca&1)
{
ans=(ans+pa[n-k*wu[2*ca]]);
ans=(ans%mod+mod)%mod;
if(k*wu[2*ca+1]<=n)
ans=(ans+pa[n-k*wu[2*ca+1]]),ans=(ans%mod+mod)%mod;
}
else
{
ans=(ans-pa[n-k*wu[2*ca]]);
ans=(ans%mod+mod)%mod;
if(k*wu[2*ca+1]<=n)
ans=(ans-pa[n-k*wu[2*ca+1]]),ans=(ans%mod+mod)%mod;
}
ca++;
}
return ans;
}
int main()
{
int T,n,k;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
printf("%I64d
",work(n,k));
}
return 0;
}