zoukankan      html  css  js  c++  java
  • HDU 3485 Count 101(DP)

    Count 101

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1114    Accepted Submission(s): 568


    Problem Description
    You know YaoYao is fond of his chains. He has a lot of chains and each chain has n diamonds on it. There are two kinds of diamonds, labeled 0 and 1. We can write down the label of diamonds on a chain. So each chain can be written as a sequence consisting of 0 and 1.
    We know that chains are different with each other. And their length is exactly n. And what’s more, each chain sequence doesn’t contain “101” as a substring. 
    Could you tell how many chains will YaoYao have at most?
     
    Input
    There will be multiple test cases in a test data. For each test case, there is only one number n(n<10000). The end of the input is indicated by a -1, which should not be processed as a case.
     
    Output
    For each test case, only one line with a number indicating the total number of chains YaoYao can have at most of length n. The answer should be print after module 9997.
     
    Sample Input
    3
    4
    -1
     
    Sample Output
    7
    12
    Hint
    We can see when the length equals to 4. We can have those chains: 0000,0001,0010,0011 0100,0110,0111,1000 1001,1100,1110,1111
     
    Source
     
    Recommend
    zhengfeng
     
    这个有点类似于数位DP,但是不是数位DP
    设dp[i][j][k]表示长度为i串的最后两位数为i,j的不包含101的个数。
    所以dp方程就有了:

    dp[i][0][0]+=dp[i-1][0][1]+dp[i-1][0][0]
    dp[i][0][1]+=dp[i-1][1][0]+dp[i-1][1][1]
    dp[i][1][0]+=dp[i-1][0][0]
    dp[i][1][1]+=dp[i-1][1][0]+dp[i-1][1][1]

    最后取ans求总数就行了

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<stdlib.h>
    #include<algorithm>
    using namespace std;
    const int mod=9997;
    const int MAXN=10000+5;
    int dp[MAXN][2][2],n,ans[MAXN];
    
    void init()
    {
        memset(dp,0,sizeof(dp));
        memset(ans,0,sizeof(ans));
        ans[0]=0;ans[1]=2;ans[2]=4;
        dp[2][0][0]=dp[2][0][1]=dp[2][1][0]=dp[2][1][1]=1;
        dp[1][1][0]=dp[1][0][0]=1;
        for(int i=3;i<MAXN;i++)
        {
            dp[i][0][0]=(dp[i][0][0]+(dp[i-1][0][1]+dp[i-1][0][0])%mod)%mod;
            dp[i][0][1]=(dp[i][0][1]+(dp[i-1][1][0]+dp[i-1][1][1])%mod)%mod;
            dp[i][1][0]=(dp[i][1][0]+(dp[i-1][0][0])%mod)%mod;
            dp[i][1][1]=(dp[i][1][1]+(dp[i-1][1][0]+dp[i-1][1][1])%mod)%mod;
            ans[i]=(dp[i][0][0]+dp[i][0][1]+dp[i][1][0]+dp[i][1][1])%mod;
        }
    }
    
    int main()
    {
        init();
        while(scanf("%d",&n)&&n!=-1)
        {
            printf("%d
    ",ans[n]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    javascript中的常用表单事件用法
    关于js键盘事件的例子
    对象间引用赋值及方法时引用传递
    反编译工具reflector破解方法
    使用委托(C# 编程指南)
    委托(C# 编程指南)
    浅谈线程池(下):相关试验及注意事项
    Lambda 表达式(C# 编程指南)
    浅谈线程池(中):独立线程池的作用及IO线程池
    浅谈线程池(上):线程池的作用及CLR线程池
  • 原文地址:https://www.cnblogs.com/clliff/p/4029236.html
Copyright © 2011-2022 走看看