zoukankan      html  css  js  c++  java
  • HDU 1159 Common Subsequence (LCS)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 24972    Accepted Submission(s): 11071


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
     
    Recommend
    Ignatius
     
    这是一道LCS的裸题:求两个字符串的最长的公共子序列
    那么可以定义状态:dp[i][j]以a字符串的第i个字符结尾并且以b字符串的第j个字符结尾的最长公共子序列的长度
    状态转移:
    if(a[i]==b[j]),dp[i][j]=dp[i-1][j-1]+1; //当两个字符串的中的某一个字符相同时,状态由当前字符串前一位的状态转移过来
    else dp[i][j]=max(dp[i-1][j],dp[i][j-1])
    最后要注意边界以及初始化的问题
    dp[i][0]=0;
    dp[0][j]=0;
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<stdlib.h>
    #include<queue>
    #include<stack>
    #include<algorithm>
    #define LL __int64
    using namespace std;
    const int MAXN=1000+5;
    const int INF=0x3f3f3f3f;
    const double EPS=1e-9;
    int dir4[][2]={{0,1},{1,0},{0,-1},{-1,0}};
    int dir8[][2]={{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1}};
    int dir_8[][2]={{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2},{-1,-2},{-2,-1}};
    int dp[1000][1000];
    char a[1000],b[1000];
    int main()
    {
        while(scanf("%s %s",a+1,b+1)!=EOF)
        {
            int lena=strlen(a+1),lenb=strlen(b+1);
            int i,j;
            memset(dp,0,sizeof(dp));
            for(i=0;i<=lena;i++)
                dp[i][0]=0;
            for(j=0;j<=lenb;j++)
                dp[0][j]=0;
            for(i=1;i<=lena;i++)
            {
                for(j=1;j<=lenb;j++)
                {
                    if(a[i]==b[j])
                        dp[i][j]=dp[i-1][j-1]+1;
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[lena][lenb]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    LN : leetcode 217 Contains Duplicate
    LN : leetcode 53 Maximum Subarray
    day23——删除数据、更改数据、索引
    day22——创建表、增加数据、查询数据
    day21——游标、mysql连接池、设计表结构
    day20——安装客户端、数据库连接、mysql事务、mysql操作数据
    day19——常用正则表达式、re正则对象和正则匹配效率比较、编译正则对象
    day20——re的matche方法和search方法、re的split,findall,finditer方法、re的matche对象
    day18——json
    day17——logging、os模块、commands模块、sys模块
  • 原文地址:https://www.cnblogs.com/clliff/p/4250761.html
Copyright © 2011-2022 走看看