zoukankan      html  css  js  c++  java
  • HDU 1159 Common Subsequence (LCS)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 24972    Accepted Submission(s): 11071


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
     
    Recommend
    Ignatius
     
    这是一道LCS的裸题:求两个字符串的最长的公共子序列
    那么可以定义状态:dp[i][j]以a字符串的第i个字符结尾并且以b字符串的第j个字符结尾的最长公共子序列的长度
    状态转移:
    if(a[i]==b[j]),dp[i][j]=dp[i-1][j-1]+1; //当两个字符串的中的某一个字符相同时,状态由当前字符串前一位的状态转移过来
    else dp[i][j]=max(dp[i-1][j],dp[i][j-1])
    最后要注意边界以及初始化的问题
    dp[i][0]=0;
    dp[0][j]=0;
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<stdlib.h>
    #include<queue>
    #include<stack>
    #include<algorithm>
    #define LL __int64
    using namespace std;
    const int MAXN=1000+5;
    const int INF=0x3f3f3f3f;
    const double EPS=1e-9;
    int dir4[][2]={{0,1},{1,0},{0,-1},{-1,0}};
    int dir8[][2]={{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1}};
    int dir_8[][2]={{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2},{-1,-2},{-2,-1}};
    int dp[1000][1000];
    char a[1000],b[1000];
    int main()
    {
        while(scanf("%s %s",a+1,b+1)!=EOF)
        {
            int lena=strlen(a+1),lenb=strlen(b+1);
            int i,j;
            memset(dp,0,sizeof(dp));
            for(i=0;i<=lena;i++)
                dp[i][0]=0;
            for(j=0;j<=lenb;j++)
                dp[0][j]=0;
            for(i=1;i<=lena;i++)
            {
                for(j=1;j<=lenb;j++)
                {
                    if(a[i]==b[j])
                        dp[i][j]=dp[i-1][j-1]+1;
                    else
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                }
            }
            printf("%d
    ",dp[lena][lenb]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    网易编程题——小易喜欢的单词
    Effective C++ 条款12:复制对象时勿忘其每一个成分
    Effective C++ 条款11:在operator=中处理"自我赋值"
    STM32-通用定时器基本定时功能
    GPIO_Mode
    STM32的ADC编程方法
    STM32的ADC采样与多通道ADC采样
    网络子系统
    linux网络子系统内核分析
    Linux 中高效编写 Bash 脚本的 10 个技巧
  • 原文地址:https://www.cnblogs.com/clliff/p/4250761.html
Copyright © 2011-2022 走看看