zoukankan      html  css  js  c++  java
  • ZOJ 3598 Spherical Triangle (三角关系)

    ZOJ Problem Set - 3598
    Spherical Triangle

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    As everybody knows, the sum of the interior angles of a triangle on a plane is always 180 degree. But this is not true when the triangle is on spherical surface. Given a triangle on a spherical surface, you are asked to calculate the sum of the interior angles of the triangle.

    picture

    Formally, you are given the 3 vertex of the triangle. They are connected by the arcs of the great circles, i.e. circles whose centers coincide with the center of the sphere. It is guaranteed that the triangle is not degenerate, i.e. the 3 vertices will not lie on one great circle and no two vertices collide. The interior of the triangle is defined as the smaller part that the triangle is divide into.

    Input

    There are multiple test cases. The first line of input contains an integer T (0 < T ≤ 2012) indicating the number of test cases. Then T test cases follow.

    Each test case contains 3 lines, indicating the position of the 3 vertices. Each line contains 2 real number, each of which contains at most 2 digits after the decimal point, indicating the longitude and the latitude of the vertex. The longitude and the latitude are measured in degree. The longitude will be in (-180, 180] while the latitude will be in [-90, 90].

    Output

    For each test case, output the sum of the interior angles of the triangle measured in degree, accurate to 0.01.

    Sample Input

    1
    0 0
    90 0
    0 90
    

    Sample Output

    270.00
    

    References


    Author: GUAN, Yao
    Contest: The 12th Zhejiang University Programming Contest
     
    题意:给出三个点的经度和纬度,求球面三角形的内角和。
    分析:根据题目给出的链接的提示结合三角函数计算推出公式就行。
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<stdlib.h>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<algorithm>
    using namespace std;
    const double PI=acos(-1.0);
    struct node
    {
        double x;
        double y;
        double z;
    }A,B,C;
    
    void change(double j,double w,node &P)
    {
        P.x=cos(w*PI/180)*cos(j*PI/180);
        P.y=cos(w*PI/180)*sin(j*PI/180);
        P.z=sin(w*PI/180);
    }
    
    double calc(node PA,node PB)
    {
        return (PA.x*PB.x)+(PA.y*PB.y)+(PA.z*PB.z);
    }
    
    int main()
    {
        int kase;
        scanf("%d",&kase);
        while(kase--)
        {
            double ax,ay,bx,by,cx,cy;
            scanf("%lf %lf %lf %lf %lf %lf",&ax,&ay,&bx,&by,&cx,&cy);
            change(ax,ay,A);
            change(bx,by,B);
            change(cx,cy,C);
            //printf("%lf %lf %lf
    ",A.x,A.y,A.z);
            double a,b,c;
            a=acos(calc(B,C));
            b=acos(calc(A,C));
            c=acos(calc(A,B));
            //printf("a=%lf b=%lf c=%lf
    ",a,b,c);
    
            double biga,bigb,bigc;
            biga=acos( ( cos(a)-cos(b)*cos(c) )/ ( sin(b)*sin(c) ) );
            bigb=acos( ( cos(b)-cos(a)*cos(c) )/ ( sin(a)*sin(c) ) );
            bigc=acos( ( cos(c)-cos(a)*cos(b) )/ ( sin(a)*sin(b) ) );
    
            double ans=biga+bigb+bigc;
            //printf("%.2lf
    ",ans);
            ans=ans*(180/PI);
            printf("%.2lf
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    [LeetCode] 56. Merge Intervals 解题思路
    [LeetCode] 128. Longest Consecutive Sequence 解题思路
    [LeetCode] Subsets I (78) & II (90) 解题思路,即全组合算法
    linux安装PHP7以及扩展
    php安装composer
    细说PHP中strlen和mb_strlen的区别
    mysql一些简单操作
    mysql数据库使用Navicat时向Navicat导入sql文件时某字段过大时的处理
    JS中||的某些用法
    PHP验证身份信息
  • 原文地址:https://www.cnblogs.com/clliff/p/4486073.html
Copyright © 2011-2022 走看看