zoukankan      html  css  js  c++  java
  • ZOJ 3598 Spherical Triangle (三角关系)

    ZOJ Problem Set - 3598
    Spherical Triangle

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    As everybody knows, the sum of the interior angles of a triangle on a plane is always 180 degree. But this is not true when the triangle is on spherical surface. Given a triangle on a spherical surface, you are asked to calculate the sum of the interior angles of the triangle.

    picture

    Formally, you are given the 3 vertex of the triangle. They are connected by the arcs of the great circles, i.e. circles whose centers coincide with the center of the sphere. It is guaranteed that the triangle is not degenerate, i.e. the 3 vertices will not lie on one great circle and no two vertices collide. The interior of the triangle is defined as the smaller part that the triangle is divide into.

    Input

    There are multiple test cases. The first line of input contains an integer T (0 < T ≤ 2012) indicating the number of test cases. Then T test cases follow.

    Each test case contains 3 lines, indicating the position of the 3 vertices. Each line contains 2 real number, each of which contains at most 2 digits after the decimal point, indicating the longitude and the latitude of the vertex. The longitude and the latitude are measured in degree. The longitude will be in (-180, 180] while the latitude will be in [-90, 90].

    Output

    For each test case, output the sum of the interior angles of the triangle measured in degree, accurate to 0.01.

    Sample Input

    1
    0 0
    90 0
    0 90
    

    Sample Output

    270.00
    

    References


    Author: GUAN, Yao
    Contest: The 12th Zhejiang University Programming Contest
     
    题意:给出三个点的经度和纬度,求球面三角形的内角和。
    分析:根据题目给出的链接的提示结合三角函数计算推出公式就行。
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<stdlib.h>
    #include<vector>
    #include<queue>
    #include<stack>
    #include<algorithm>
    using namespace std;
    const double PI=acos(-1.0);
    struct node
    {
        double x;
        double y;
        double z;
    }A,B,C;
    
    void change(double j,double w,node &P)
    {
        P.x=cos(w*PI/180)*cos(j*PI/180);
        P.y=cos(w*PI/180)*sin(j*PI/180);
        P.z=sin(w*PI/180);
    }
    
    double calc(node PA,node PB)
    {
        return (PA.x*PB.x)+(PA.y*PB.y)+(PA.z*PB.z);
    }
    
    int main()
    {
        int kase;
        scanf("%d",&kase);
        while(kase--)
        {
            double ax,ay,bx,by,cx,cy;
            scanf("%lf %lf %lf %lf %lf %lf",&ax,&ay,&bx,&by,&cx,&cy);
            change(ax,ay,A);
            change(bx,by,B);
            change(cx,cy,C);
            //printf("%lf %lf %lf
    ",A.x,A.y,A.z);
            double a,b,c;
            a=acos(calc(B,C));
            b=acos(calc(A,C));
            c=acos(calc(A,B));
            //printf("a=%lf b=%lf c=%lf
    ",a,b,c);
    
            double biga,bigb,bigc;
            biga=acos( ( cos(a)-cos(b)*cos(c) )/ ( sin(b)*sin(c) ) );
            bigb=acos( ( cos(b)-cos(a)*cos(c) )/ ( sin(a)*sin(c) ) );
            bigc=acos( ( cos(c)-cos(a)*cos(b) )/ ( sin(a)*sin(b) ) );
    
            double ans=biga+bigb+bigc;
            //printf("%.2lf
    ",ans);
            ans=ans*(180/PI);
            printf("%.2lf
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    2-6 R语言基础 缺失值
    2-5 R语言基础 factor
    2-4 R语言基础 列表
    2-3 R语言基础 矩阵和数组
    2-2 R语言基础 向量
    【转】Python操作MongoDB数据库
    Python程序的执行原理
    数据分析的职业规划
    自定义菜单 开发 服务器繁忙
    微信自定义菜单
  • 原文地址:https://www.cnblogs.com/clliff/p/4486073.html
Copyright © 2011-2022 走看看