zoukankan      html  css  js  c++  java
  • [LuoguP4303] 基因匹配

    P4303 基因匹配

    前言

    ​ 因为看到这题没有人用偏序的讲法感到十分奇怪,就来整一发。

    Solution

    ​ 首先这是一个 LCS 问题,而在最长公共子序列的题解之中可以找到大量关于 LCS 的解决方案。

    ​ 以下简要阐述我关于如何将 LCS 转化为 LIS 的简要概括。

    • 对于任意公共子序列 (S=s_1s_2s_3...s_k) ,对于其中某元素 (s_i) 记它在第一个串中的位置为 (a_i) 在第二个串中为 (b_i)
    • 那么 (forall i > 1,a_i>a_{i-1},b_i>b_{i-1}) 恒成立

    于是这个问题就变成了一个二维偏序问题,这也是 LIS 的经典解法。

    ​ 如果说不知道什么是二维偏序,可以上网搜索。以下给出简要理解。二维偏序是一种要求同时满足两个偏序关系(两个不等式)的计数问题。可以先通过排序解决一个不等式,然后再用数据结构或CDQ等方式解决。

    ​ 此处使用权值树状数组,记录位置早于 x 的最大值。值得一提的是,以在第二个串中的下标顺序计算可以直接符合一个偏序,无需排序。

    ​ 用几何的方式来解释,即以某个字符在第二个串中的位置作为横坐标,在第一个串中的可能位置为纵坐标,在坐标系上建立一个点。

    ​ 最后要求一个单增函数经过尽可能多的点。树状数组可以快速算出处于 (y=alpha) 这样一条水平线下的最大纵坐标。

    ​ 还有一个小细节,最朴素去做的话,应该是一个横坐标对应的五个点一起算出来再加入树状数组,因为要求纵坐标严格小于。但是如果纵坐标从上往下枚举,答案就不会相互影响。类似于0/1 背包。

    ​ 代码内附注释。

    CODE

    #define fe(i,a,b) for(int i=a;i<=b;++i)
    inline int read()//快读
    const int MAXN=1e5+5;
    int n,x,bet[MAXN];
    vector<int> pos[MAXN];//记录每个数字在第一个串中的位置
    inline int lowbit(int x){return x&(-x);}//树状数组部分
    inline void add(int x,int y){for(;x<=n;x+=lowbit(x))bet[x]=max(bet[x],y);}
    inline int query(int x){return x?max(query(x-lowbit(x)),bet[x]):0;}
    int main(){
    	n=read()*5;//长度是五倍
    	fe(i,1,n)pos[read()].push_back(i);
    	fe(i,1,n)for(int j=4,x=read();j>=0;--j)add(pos[x][j],query(pos[x][j]-1)+1);
        //倒序枚举位置,计算的同时更新,-1是因为严格小于,+1是因为计算答案
    	printf("%d",query(n));//上界之下的最大值就是答案
    	return 0;
    }
    
  • 相关阅读:
    element表格添加序号
    ZOJ 3822 Domination(概率dp)
    HDU 3037(Lucas定理)
    HDU 5033 Building(单调栈维护凸包)
    HDU 5037 Frog(贪心)
    HDU 5040 Instrusive(BFS+优先队列)
    HDU 5120 Intersection(几何模板题)
    HDU 5115 Dire Wolf(区间dp)
    HDU 5119 Happy Matt Friends(dp+位运算)
    C++ string详解
  • 原文地址:https://www.cnblogs.com/clockwhite/p/14068988.html
Copyright © 2011-2022 走看看