tf.transpose函数解析
觉得有用的话,欢迎一起讨论相互学习~
tf.transpose(a, perm = None, name = 'transpose')
解释
- 将a进行转置,并且根据perm参数重新排列输出维度。这是对数据的维度的进行操作的形式。
Details
-
图像处理时数据集中存储数据的形式为[channel,image_height,image_width],在tensorflow中使用CNN时我们需要将其转化为[image_height,image_width,channel]的形式,只需要使用tf.transpose(input_data,[1,2,0])
-
输出数据tensor的第i维将根据perm[i]指定。比如,如果perm没有给定,那么默认是perm = [n-1, n-2, ..., 0],其中rank(a) = n。
-
默认情况下,对于二维输入数据,其实就是常规的矩阵转置操作。
Example
input_data.dims = (1, 4, 3)
perm = [1, 2, 0]
因为 output_data.dims[0] = input_data.dims[ perm[0] ]
因为 output_data.dims[1] = input_data.dims[ perm[1] ]
因为 output_data.dims[2] = input_data.dims[ perm[2] ]
所以得到 output_data.dims = (4, 3, 1)
output_data.dims = (4, 3, 1)
代码演示
import tensorflow as tf
sess = tf.Session()
input_data = tf.constant([[1, 2, 3], [4, 5, 6]])
print(sess.run(tf.transpose(input_data)))
# [[1 4]
# [2 5]
# [3 6]]
print(sess.run(input_data))
# [[1 2 3]
# [4 5 6]]
print(sess.run(tf.transpose(input_data, perm=[1, 0])))
# [[1 4]
# [2 5]
# [3 6]]
input_data = tf.constant([[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]])
print('input_data shape: ', sess.run(tf.shape(input_data)))
# [1, 4, 3]
output_data = tf.transpose(input_data, perm=[1, 2, 0])
print('output_data shape: ', sess.run(tf.shape(output_data)))
# [4, 3, 1]
print(sess.run(output_data))
# [[[ 1]
# [ 2]
# [ 3]]
# [[ 4]
# [ 5]
# [ 6]]
#
# [[ 7]
# [ 8]
# [ 9]]
#
# [[10]
# [11]
# [12]]]
"""形式为:[[[],[],[]],[[],[],[]],[[],[],[]],[[],[],[]]]"""
"""输入参数:
● a: 一个Tensor。
● perm: 一个对于a的维度的重排列组合。
● name:(可选)为这个操作取一个名字。
输出参数:
● 一个经过翻转的Tensor。"""
perm没有指定的情况下transpose函数的结果
input_data = tf.constant([[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]])
print('input_data shape: ', sess.run(tf.shape(input_data)))
# [1, 4, 3]
output_data = tf.transpose(input_data)
print('output_data shape: ', sess.run(tf.shape(output_data)))
# output_data shape: [3 4 1]
sess.close()