zoukankan      html  css  js  c++  java
  • XIV Open Cup named after E.V. Pankratiev. GP of SPb

    A. Bracket Expression

    直接按题意模拟即可。

    时间复杂度$O(n)$。

    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<queue>
    #include<time.h>
    #include<assert.h>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    typedef pair<int,int>pi;
    const int Maxn=55;
    char s[Maxn];
    int ls;
    LL sta[Maxn];
    int top=0;
    int main(){
    	freopen("bracket-expression.in","r",stdin);
    	freopen("bracket-expression.out","w",stdout);
    	fgets(s,sizeof s,stdin);
    	for(int i=0;(s[i]=='(')||(s[i]==')');i++){//-1,-2
    		if(s[i]=='(')sta[top++]=-1;
    		else{
    			LL cur=1;
    			while(top&&sta[top-1]!=-1){
    				cur=cur*sta[top-1];
    				top--;
    			}
    			sta[top-1]=cur+1;
    		}
    	}
    	LL ret=1;
    	while(top)ret=1LL*ret*sta[top-1],top--;
    	printf("%lld
    ",ret);
    	return 0;
    }
    

      

    B. Checkers

    暴力搜索所有对战情况,然后模拟。

    时间复杂度$O(2^nk)$。

    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<queue>
    #include<time.h>
    #include<assert.h>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    typedef pair<int,int>pi;
    int n,k;
    string s[22];
    int ans=0;
    int jud(vector<int>&V,string &s){
    	for(int i=V.size()-1,j=s.size()-1;i>=0&&j>=0;i--,j--){
    		if(V[i]==(s[j]=='W'))continue;
    		if(V[i])return 0;
    		else return 1;
    	}
    	return 1;
    }
    void dfs(int cur,int op,int win,vector<int>V){
    	if(cur>=k){
    		ans=max(ans,win);
    		return;
    	}
    	for(int i=1;i+cur<=k&&i<=2;i++){
    		string tmp=s[op];
    		vector<int>nxt=V;
    		int tmpwin=win;
    		for(int j=0;j<i;j++){
    			int res=jud(nxt,s[op]);
    			nxt.push_back(res);
    			if(res)tmpwin++;
    			s[op].push_back(res?'B':'W');//res==1:w
    		}
    		dfs(cur+i,(op+1)%n,tmpwin,nxt);
    		s[op]=tmp;
    	}
    }
    int main(){
    	freopen("checkers.in","r",stdin);
    	freopen("checkers.out","w",stdout);
    	scanf("%d%d",&n,&k);
    	for(int i=0;i<n;i++)cin>>s[i];
    	vector<int>V;
    	dfs(0,0,0,V);
    	printf("%d
    ",ans);
    	return 0;
    }
    

      

    C. Convex and Compact

    枚举起点,设$f[i][j][k]$表示当前凸包转到了$i$点,凸包上和内部有$j$个点,凸包上有$k$个点时凸包的最小周长,然后DP即可。

    时间复杂度$O(n^4k)$。

    #include <bits/stdc++.h>
    using namespace std ;
    
    typedef long long LL ;
    typedef pair < int , int > pii ;
    
    #define clr( a , x ) memset ( a , x , sizeof a )
    
    const int MAXN = 65 ;
    const double INF = 1e60 ;
    const double eps = 1e-8 ;
    const double pi = acos ( -1.0 ) ;
    
    int dcmp ( double x ) {
    	return ( x > eps ) - ( x < -eps ) ;
    }
    
    struct Point {
    	int x , y ;
    	Point () {}
    	Point ( int x , int y ) : x ( x ) , y ( y ) {}
    	bool operator < ( const Point& a ) const {
    		return x != a.x ? x < a.x : y < a.y ;
    	}
    	Point operator + ( const Point& a ) const {
    		return Point ( x + a.x , y + a.y ) ;
    	}
    	Point operator - ( const Point& a ) const {
    		return Point ( x - a.x , y - a.y ) ;
    	}
    	int operator * ( const Point& a ) const {
    		return x * a.y - y * a.x ;
    	}
    	double angle () {
    		return atan2 ( y , x ) ;
    	}
    	double len () {
    		return sqrt ( 0.0 + x * x + y * y ) ;
    	}
    } ;
    
    struct Node {
    	double r ;
    	int idx ;
    	bool operator < ( const Node& a ) const {
    		return r < a.r ;
    	}
    } ;
    
    struct Pre {
    	int x , y , z ;
    	Pre () {}
    	Pre ( int x , int y , int z ) : x ( x ) , y ( y ) , z ( z ) {}
    } ;
    
    Node a[MAXN] ;
    Point p[MAXN] ;
    int n , K ;
    int in[MAXN][MAXN] ;
    Pre pre[MAXN][MAXN][17] ;
    double len2[MAXN][MAXN] ;
    double dp[MAXN][MAXN][17] ;
    double ans ;
    int S[MAXN] , top ;
    int vis[MAXN] ;
    int id[MAXN] ;
    
    int cmp ( const int&a , const int& b ) {
    	return p[a].x != p[b].x ? p[a].x < p[b].x : p[a].y < p[b].y ;
    }
    
    bool PointInTri ( int i , int j , int k , int l ) {
    	LL a = ( p[i] - p[l] ) * ( p[j] - p[l] ) ;
    	LL b = ( p[j] - p[l] ) * ( p[k] - p[l] ) ;
    	LL c = ( p[k] - p[l] ) * ( p[i] - p[l] ) ;
    	return a * b > 0 && b * c > 0 && c * a > 0 ;
    }
    
    void insert ( int x , int y , int z ) {
    	Pre t = pre[x][y][z] ;
    	if ( t.x ) insert ( t.x , t.y , t.z ) ;
    	S[top ++] = a[x].idx ;
    }
    
    void calc ( int m ) {
    	for ( int i = 0 ; i <= m ; ++ i ) {
    		for ( int j = 0 ; j <= m + 1 ; ++ j ) {
    			for ( int k = 0 ; k <= K ; ++ k ) {
    				dp[i][j][k] = INF ;
    				pre[i][j][k] = Pre ( 0 , 0 , 0 ) ;
    			}
    		}
    		for ( int j = 0 ; j <= m ; ++ j ) {
    			len2[i][j] = ( p[a[i].idx] - p[a[j].idx] ).len () ;
    		}
    	}
    	for ( int i = 1 ; i <= m ; ++ i ) {
    		for ( int j = i + 1 ; j <= m ; ++ j ) {
    			in[i][j] = 3 ;
    			for ( int l = 1 ; l <= m ; ++ l ) if ( l != i && l != j ) {
    				if ( PointInTri ( a[0].idx , a[i].idx , a[j].idx , a[l].idx ) ) {
    					in[i][j] ++ ;
    				}
    			}
    		}
    	}
    	for ( int i = 1 ; i <= m ; ++ i ) {
    		dp[i][2][2] = len2[0][i] * 2 ;
    		pre[i][2][2] = Pre ( 0 , 0 , 0 ) ;
    		for ( int j = 2 ; j <= m ; ++ j ) {
    			for ( int k = 3 ; k <= min ( i + 1 , K ) ; ++ k ) {
    				for ( int l = 1 ; l < i ; ++ l ) if ( dp[l][j][k - 1] < 1e50 ) {
    					int num = j + in[l][i] - 2 ;
    					double tmp = dp[l][j][k - 1] - len2[0][l] + len2[0][i] + len2[i][l] ;
    					if ( dp[i][num][k] > tmp ) {
    						dp[i][num][k] = tmp ;
    						//printf ( "%d %d %d %.5f
    " , i , num , k , dp[i][num][k] ) ;
    						pre[i][num][k] = Pre ( l , j , k - 1 ) ;
    					}
    				}
    			}
    		}
    	}
    	int x = -1 , y , z ;
    	for ( int i = 1 ; i <= m ; ++ i ) {
    		for ( int j = K ; j <= m + 1 ; ++ j ) {
    			for ( int k = 3 ; k <= K ; ++ k ) if ( dp[i][j][k] < 1e50 ) {
    				//printf ( "dp[%d][%d][%d] = %.5f
    " , i , j , k , dp[i][j][k] ) ;
    				if ( dcmp ( dp[i][j][k] - ans ) < 0 ) {
    					ans = dp[i][j][k] ;
    					x = i ;
    					y = j ;
    					z = k ;
    				}
    			}
    		}
    	}
    	if ( ~x ) {
    		top = 0 ;
    		insert ( x , y , z ) ;
    		S[top ++] = a[0].idx ;
    	}
    }
    
    int check ( int x ) {
    	LL f = ( p[x] - p[S[0]] ) * ( p[x] - p[S[1]] ) ;
    	for ( int i = 0 ; i < top ; ++ i ) {
    		LL ff = ( p[x] - p[S[i]] ) * ( p[x] - p[S[( i + 1 ) % top]] ) ;
    		if ( f * ff < 0 ) return 0 ;
    	}
    	return 1 ;
    }
    
    void solve () {
    	ans = INF ;
    	for ( int i = 1 ; i <= n ; ++ i ) {
    		scanf ( "%d%d" , &p[i].x , &p[i].y ) ;
    	}
    	if ( K == 1 ) {
    		printf ( "%d
    " , 0 ) ;
    		printf ( "%d
    " , 1 ) ;
    		return ;
    	}
    	if ( K == 2 ) {
    		int x , y ;
    		for ( int i = 1 ; i <= n ; ++ i ) {
    			for ( int j = i + 1 ; j <= n ; ++ j ) {
    				double tmp = ( p[i] - p[j] ).len () ;
    				if ( tmp < ans ) {
    					ans = tmp ;
    					x = i ;
    					y = j ;
    				}
    			}
    		}
    		printf ( "%.8f
    " , ans ) ;
    		printf ( "%d %d
    " , x , y ) ;
    		return ;
    	}
    	for ( int i = 1 ; i <= n ; ++ i ) {
    		id[i] = i ;
    	}
    	sort ( id + 1 , id + n + 1 , cmp ) ;
    	a[0].r = -INF ;
    	for ( int i = 1 ; i <= n ; ++ i ) {
    		int m = 0 ;
    		for ( int j = i + 1 ; j <= n ; ++ j ) {
    			++ m ;
    			a[m].idx = id[j] ;
    			a[m].r = ( p[id[j]] - p[id[i]] ).angle () ;
    			//if ( dcmp ( a[j].r ) < 0 ) a[j].r = 2 * pi + a[j].r ;
    		}
    		a[0].idx = id[i] ;
    		sort ( a + 1 , a + m + 1 ) ;
    		if ( m + 1 >= K ) calc ( m ) ;
    	}
    	printf ( "%.8f
    " , ans ) ;
    	int flag = 0 ;
    	clr ( vis , 0 ) ;
    	for ( int i = 0 ; i < top ; ++ i ) {
    		if ( flag ) printf ( " " ) ;
    		flag = 1 ;
    		printf ( "%d" , S[i] ) ;
    		vis[S[i]] = 1 ;
    	}
    	for ( int i = top + 1 ; i <= K ; ++ i ) {
    		for ( int j = 1 ; j <= n ; ++ j ) if ( !vis[j] ) {
    			if ( check ( j ) ) {
    				printf ( " %d" , j ) ;
    				vis[j] = 1 ;
    				break ;
    			}
    		}
    	}
    	puts ( "" ) ;
    }
    
    int main () {
    	freopen ( "convexset.in" , "r" , stdin ) ;
    	freopen ( "convexset.out" , "w" , stdout ) ;
    	while ( ~scanf ( "%d%d" , &n , &K ) ) solve () ;
    	return 0 ;
    }
    

      

    D. Forbidden Words

    留坑。

    E. Four Prime Numbers

    设$f[i]$表示用两个质数能拼出$i$的方案数,可以通过暴力枚举两个质数求出,则$ans=sum f[i]f[n-i]$。

    时间复杂度$O(frac{n^2}{ln^2n})$。

    #include<cstdio>
    const int N=100010;
    int n,i,j,tot,v[N],p[N],f[N];long long ans;
    int main(){
      freopen("fourprimes.in","r",stdin);
      freopen("fourprimes.out","w",stdout);
      scanf("%d",&n);
      for(i=2;i<=n;i++){
        if(!v[i])p[tot++]=i;
        for(j=0;j<tot;j++){
          if(i*p[j]>n)break;
          v[i*p[j]]=1;
          if(i%p[j]==0)break;
        }
      }
      for(i=0;i<tot;i++){
        if(p[i]+p[i]<=n)f[p[i]+p[i]]++;
        for(j=0;j<i;j++){
          if(p[i]+p[j]>n)break;
          f[p[i]+p[j]]+=2;
        }
      }
      for(i=1;i<=n;i++)ans+=1LL*f[i]*f[n-i];
      printf("%lld",ans);
      return 0;
    }
    

      

    F. Set Intersection

    随机化找出规律:$ans=lfloorfrac{LM}{N} floor$。

    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<queue>
    #include<time.h>
    #include<assert.h>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    typedef pair<int,int>pi;
    int LIM=1000;
    int a[1000020],b[1000020];
    int n,l,m;
    int c[1000020],ans[1000020];
    int main(){
    	freopen("intset.in","r",stdin);
    	freopen("intset.out","w",stdout);
    	while(scanf("%d%d%d",&n,&l,&m)!=EOF){
            long long now=1LL*m*l/n;
            printf("%lld",now);
    /*		for(int i=0;i<n;i++)b[i]=i;
    		for(int i=0;i<LIM;i++){
    			random_shuffle(b,b+n);
    			int cur=0;
    			for(int j=0;j<m;j++){
    				if(b[j]<l)cur++;
    			}
    			ans[cur]++;
    		}
    		for(int i=n-1;i>=0;i--)ans[i]+=ans[i+1];
    		int rep=0;
    		for(int i=n;i>=0;i--){
    			if(ans[i]>=LIM/2){
    				rep=i;
    				break;
    			}
    		}
    		printf("%d
    ",rep);*/
    	}
    	return 0;
    }
    

    G. Medals

    将第$x$名的费用设置为$1001^{10-x}$,那么答案就是二分图最大权匹配,费用流求解即可,需要用__int128存储。

    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<queue>
    #include<time.h>
    #include<assert.h>
    #include<iostream>
    using namespace std;
    typedef __int128 LL;
    typedef pair<int,int>pi;
    const int Maxn=2020,Maxe=200020;
    LL Inf=1LL<<60;
    LL pw[15];
    int ne;
    int n,s,t;
    vector<int>G[Maxn];
    struct E{
    	int v,c;
    	LL w;
    	E(){}
    	E(int v,int c,LL w):v(v),c(c),w(w){}
    }e[Maxe];
    void add(int u,int v,int c,LL w){
    	e[ne]=E(v,c,w);
    	G[u].push_back(ne++);
    	e[ne]=E(u,0,-w);
    	G[v].push_back(ne++);
    }
    int pre[Maxn],pe[Maxn],inq[Maxn];
    LL d[Maxn];
    bool spfa(){
    	for(int i=0;i<=t;i++)d[i]=Inf,inq[i]=0;
    	d[s]=0;
    	queue<int>q;
    	q.push(s);
    	while(!q.empty()){
    		int u=q.front();q.pop();
    		for(int i=0;i<G[u].size();i++){
    			int id=G[u][i];
    			int v=e[id].v;
    			LL w=e[id].w;
    			int c=e[id].c;
    			if(!c)continue;
    			if(d[v]>d[u]+w){
    				pre[v]=u;
    				pe[v]=id;
    				d[v]=d[u]+w;
    				if(!inq[v]){q.push(v);inq[v]=1;}
    			}
    		}
    		inq[u]=0;
    	}
    	return d[t]<0;
    }
    int rep[100];
    int cho[Maxn];
    void costflow(){
    	LL ans=0;
    	while(spfa()){
    		ans-=d[t];
    		for(int i=t;i!=s;i=pre[i]){
    			e[pe[i]].c--;
    			e[pe[i]^1].c++;
    		}
    	}
    	for(int i=0;i<10;i++)rep[10-i]=ans%1001,ans/=1001;
    	for(int i=1;i<=10;i++)printf("%d%c",rep[i],i==10?'
    ':' ');
    	for(int i=1;i<=n;i++){
    		cho[i]=0;
    		for(int j=0;j<G[i].size();j++){
    			int id=G[i][j];
    			if(e[id].v!=s&&(!e[id].c)){
    				cho[i]=e[id].v-n;
    			}
    		}
    	}
    	for(int i=1;i<=n;i++)printf("%d%c",cho[i],i==n?'
    ':' ');
    }
    int main(){
    	freopen("medals.in","r",stdin);
    	freopen("medals.out","w",stdout);
    	pw[0]=1;
    	Inf*=Inf;
    	for(int i=1;i<=11;i++)pw[i]=pw[i-1]*1001;
    	scanf("%d",&n);
    	for(int i=1;i<=n;i++){
    		int k;scanf("%d",&k);
    		for(int j=0;j<k;j++){
    			int id,rk;
    			scanf("%d%d",&id,&rk);
    			add(i,id+n,1,-pw[10-rk]);
    		}
    		add(s,i,1,0);
    	}
    	s=0;t=n+1000+1;
    	for(int i=n+1;i<t;i++)add(i,t,1,0);
    	costflow();
    	return 0;
    }
    

      

    H. Reachability

    对于每个询问,压位记忆化搜索即可。

    时间复杂度$O(frac{qn^3}{64})$。

    #include<cstdio>
    #include<bitset>
    using namespace std;
    typedef unsigned int U;
    const int N=405;
    typedef bitset<N>DS;
    int n,m,i,A,B;bool g[N][N],v[N];
    U pa[N],pb[N];
    DS f[N];
    void dfs(int x){
      if(v[x])return;
      v[x]=1;
      for(int i=1;i<=n;i++)if(g[x][i]){
        dfs(i);
        f[x]|=f[i];
      }
    }
    inline void vio(){
      int i,j;
      for(i=1;i<=n;i++){
        v[i]=0,f[i].reset();
        f[i][i]=1;
      }
      for(i=1;i<=n;i++)if(!v[i])dfs(i);
      U ret=0;
      for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
          if(f[i][j]==1&&i!=j){
    //        printf("%d->%d
    ",i,j);
            ret+=pa[i-1]*pb[j-1];
          }
      printf("%u
    ",ret);
    }
    int main(){
      freopen("reachability.in","r",stdin);
      freopen("reachability.out","w",stdout);
      scanf("%d%d%d%d",&n,&m,&A,&B);
      for(pa[0]=i=1;i<=n;i++)pa[i]=pa[i-1]*A;
      for(pb[0]=i=1;i<=n;i++)pb[i]=pb[i-1]*B;
      for(i=1;i<=m;i++){
        char op1[5],op2[5];
        int x,k,y;
        scanf("%s%s%d%d",op1,op2,&x,&k);
        if(op2[0]=='o'){
          while(k--)scanf("%d",&y),g[x][y]^=1;
        }else{
          while(k--)scanf("%d",&y),g[y][x]^=1;
        }
        vio();
      }
      return 0;
    }
    

      

    I. Revolving Lasers

    留坑。

    J. Snakes on the Stone

    从蛇头开始走,每次碰到交点就往上走即可,这样一定可以保证不打结。

    #include <bits/stdc++.h>
    using namespace std ;
    
    typedef long long LL ;
    typedef pair < int , int > pii ;
    
    #define clr( a , x ) memset ( a , x , sizeof a )
    
    const int MAXN = 30 ;
    
    int a[MAXN][MAXN] , n , m[3] ;
    int vis[MAXN][MAXN] ;
    int x[3][MAXN * MAXN] , y[3][MAXN * MAXN] ;
    
    void solve () {
    	clr ( a , 0 ) ;
    	clr ( vis , 0 ) ;
    	for ( int i = 0 ; i < n ; ++ i ) {
    		scanf ( "%d" , &m[i] ) ;
    		for ( int j = 1 ; j <= m[i] ; ++ j ) {
    			scanf ( "%d%d" , &x[i][j] , &y[i][j] ) ;
    			vis[x[i][j]][y[i][j]] ++ ;
    		}
    	}
    	for ( int i = 0 ; i < n ; ++ i ) {
    		for ( int j = 1 ; j <= m[i] ; ++ j ) {
    			int r = x[i][j] , c = y[i][j] ;
    			if ( vis[r][c] == 2 ) {
    				if ( !a[r][c] ) {
    					++ a[r][c] ;
    					putchar ( '-' ) ;
    				} else {
    					putchar ( '+' ) ;
    				}
    			}
    		}
    		puts ( "" ) ;
    	}
    }
    
    int main () {
    	freopen ( "snakes2.in" , "r" , stdin ) ;
    	freopen ( "snakes2.out" , "w" , stdout ) ;
    	while ( ~scanf ( "%d" , &n ) ) solve () ;
    	return 0 ;
    }
    

      

    K. Dependent Subsets

    选出的这些向量的秩只能是$1$或$2$,枚举一个基向量,用它去对其它向量进行消元,约分之后排序,首先被消完的向量都可以选入,然后再选若干个约分后完全相等的向量即可。

    时间复杂度$O(n^2d)$。

    #include<stdio.h>
    #include<algorithm>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<vector>
    #include<set>
    #include<map>
    #include<queue>
    #include<time.h>
    #include<assert.h>
    #include<iostream>
    using namespace std;
    typedef long long LL;
    typedef pair<int,int>pi;
    const int Maxn=1020;
    int n,d;
    vector<int> a[Maxn];
    vector<int> b[Maxn];
    int id[Maxn];
    int use[Maxn];
    int st[Maxn];
    bool cmp(int t1,int t2){
    	return b[t1]<b[t2];
    }
    int xiao(vector<int>&x){//return first nonzero loc
    	int fst=x.size();
    	for(int i=0;i<x.size();i++){
    		if(x[i]!=0){fst=i;break;}
    	}
    	if(fst>=x.size())return fst;
    	int gc=abs(x[fst]);
    	for(int i=fst+1;i<x.size();i++){
    		if(x[i]!=0){
    			gc=__gcd(abs(x[i]),gc);
    		}
    	}
    	int tmp=x[fst]<0?(-gc):gc;
    	for(int i=fst;i<x.size();i++){
    		if(x[i]!=0)x[i]=x[i]/tmp;
    	}
    	return fst;
    }
    vector<int> dec(vector<int>&x,vector<int>&y,int st1,int st2){
    	if(!y[st1])return y;
    	vector<int>ret=x;
    	int lcm=x[st1]*abs(y[st1])/__gcd(x[st1],abs(y[st1]));
    	int be1=lcm/x[st1],be2=lcm/y[st1];
    	for(int i=0;i<x.size();i++)ret[i]=x[i]*be1-y[i]*be2;
    	return ret;
    }
    void pt(vector<int>&x){
    	for(int i=0;i<x.size();i++)printf("%d ",x[i]);puts("");
    }
    bool iszero(vector<int>&x){
    	for(int i=0;i<x.size();i++)if(x[i])return 0;
    	return 1;
    }
    int main(){
    	freopen("subset.in","r",stdin);
    	freopen("subset.out","w",stdout);
    	scanf("%d%d",&n,&d);
    	for(int i=1;i<=n;i++){
    		for(int j=0;j<d;j++){
    			int x;scanf("%d",&x);
    			a[i].push_back(x);
    		}
    	}
    	for(int i=1;i<=n;i++)st[i]=xiao(a[i]);
    	vector<int>rep;
    	for(int i=1;i<=n;i++){
    		int cnt=0;
    		for(int j=i+1;j<=n;j++){
    			b[cnt]=dec(a[i],a[j],st[i],st[j]);
    			xiao(b[cnt]);
    			use[cnt]=cnt;
    			id[cnt]=j;
    			cnt++;
    		}
    		sort(use,use+cnt,cmp);
    		int sel=-1,sr;
    		int now=0;
    		vector<int>tmp;
    		tmp.push_back(i);
    		for(;now<cnt&&iszero(b[use[now]]);now++)tmp.push_back(id[use[now]]);
    		int tmpans=0;
    		for(int j=now,k;j<cnt;j=k){
    			for(k=j+1;k<cnt&&b[use[k]]==b[use[j]];k++);
    			if((k-j)>tmpans){
    				sel=j;
    				sr=k;
    				tmpans=k-j;
    			}
    		}
    		if(sel>=0){
    			for(int j=sel;j<sr;j++)tmp.push_back(id[use[j]]);
    		}
    		if(tmp.size()>rep.size())swap(tmp,rep);
    	}
    	printf("%d
    ",(int)rep.size());
    	for(int i=0;i<rep.size();i++)printf("%d%c",rep[i],i==rep.size()-1?'
    ':' ');
    	return 0;
    }
    

      

  • 相关阅读:
    on和where的区别
    分组查询 group by having 排序 order by asc(升序)或desc(降序)
    连接查询 left join on, union
    md5加密方法
    where查询条件的指定,between and,in,like
    Mapnix(转) Anny
    Rolebased access control(RBAC) Anny
    TestComplete如何识别对象(转) Anny
    Jira workflow Anny
    crx文件 Anny
  • 原文地址:https://www.cnblogs.com/clrs97/p/5944424.html
Copyright © 2011-2022 走看看