A. Auxiliary Project
完全背包。
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { } #define MS(x, y) memset(x, y, sizeof(x)) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; } const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f; template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; } int casenum, casei; int n; int f[1000005]; int g[10] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}; int main() { freopen("auxiliary.in", "r", stdin); freopen("auxiliary.out", "w", stdout); while(~scanf("%d",&n)) { MS(f, -1); f[0] = 0; for(int i = 0; i <= n; ++i) { for(int j = 0; j < 10; ++j) { if(i - g[j] >= 0 && f[i - g[j]] >= 0) { gmax(f[i], f[i - g[j]] + j); } } } printf("%d ", f[n]); } return 0; } /* 【trick&&吐槽】 【题意】 【分析】 【时间复杂度&&优化】 */
B. Boolean Satisfiability
设$t$为出现过的变量个数,若同时存在某个变量以及其反变量,则答案为$2^t$,否则答案为$2^t-1$。
#include<cstdio> #include<cstring> typedef long long ll; const int N=100010; bool v[N],neg[N]; char s[N]; int n,i; int main(){ freopen("boolean.in", "r", stdin); freopen("boolean.out", "w", stdout); scanf("%s",s+1); n=strlen(s+1); for(i=1;i<=n;){ if(s[i]=='|')i++; else if(s[i]=='~'){ neg[s[i+1]]=1; i+=2; }else{ v[s[i]]=1; i++; } } ll ans=1,flag=1; for(i=1;i<N;i++){ if(v[i]||neg[i])ans*=2; if(v[i]&&neg[i])flag=0; } printf("%I64d",ans-flag); }
C. Consonant Fencity
$O(2^{19})$枚举所有辅音字母的大小写即可。
#include<cstdio> #include<cstring> typedef long long ll; const int N=1000010; char s[N]; int n,i,j,mx,now,ans,S; bool is[26],big[26]; int g[26][26],w[26][26],q[26],m; int main(){ freopen("consonant.in", "r", stdin); freopen("consonant.out", "w", stdout); scanf("%s",s); n=strlen(s); for(i=1;i<n;i++){ g[s[i-1]-'a'][s[i]-'a']++; } is['a'-'a']=1; is['e'-'a']=1; is['i'-'a']=1; is['o'-'a']=1; is['u'-'a']=1; is['w'-'a']=1; is['y'-'a']=1; for(i=0;i<26;i++)if(!is[i])q[m++]=i; for(i=0;i<26;i++)for(j=0;j<26;j++){ if(is[i]||is[j])g[i][j]=0; } for(i=0;i<m;i++)for(j=0;j<m;j++)w[i][j]=g[q[i]][q[j]]; for(S=0;S<1<<m;S++){ now=0; for(i=0;i<m;i++)for(j=0;j<m;j++)if(((S>>i)^(S>>j))&1)now+=w[i][j]; if(now>mx)mx=now,ans=S; } //printf("mx=%d ",mx); S=ans; for(i=0;i<26;i++)big[i]=0; for(i=0;i<m;i++)if(S>>i&1)big[q[i]]=1; for(i=0;i<n;i++)if(big[s[i]-'a'])putchar(s[i]-'a'+'A');else putchar(s[i]); }
D. Dividing Marbles
留坑。
E. Equal Numbers
令$goal=lcm(a_1,a_2,...,a_n)$,那么对于每种数,可以变成另一个存在的倍数,或者直接变成$goal$。
按照代价从小到大合并即可。
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { } #define MS(x, y) memset(x, y, sizeof(x)) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; } const int N = 1e6 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f; template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; } int casenum, casei; int n; map<int, int>mop; vector<int>vt[2]; int f[N]; int main() { freopen("equal.in", "r", stdin); freopen("equal.out", "w", stdout); while(~scanf("%d",&n)) { mop.clear(); for(int i = 1; i <= n; ++i) { int x; scanf("%d", &x); ++mop[x]; } int top = 1e6; for(int i = 0; i <= 1; ++i)vt[i].clear(); for(auto it : mop) { int i = it.first; vt[0].push_back(it.second); for(int j = i + i; j <= top; j += i)if(mop.count(j)) { vt[1].push_back(it.second); break; } } int ans = mop.size(); MS(f, 63); f[0] = ans; int sum = 0; int sz = vt[1].size(); sort(vt[1].begin(), vt[1].end()); for(int j = 0; j < sz; ++j) { sum += vt[1][j]; gmin(f[sum], ans - j - 1); } sum = 0; sz = vt[0].size(); sort(vt[0].begin(), vt[0].end()); for(int j = 0; j < sz; ++j) { sum += vt[0][j]; gmin(f[sum], ans - j); } for(int i = 0; i <= n; ++i) { if(i)gmin(f[i], f[i - 1]); printf("%d ", f[i]); } puts(""); } return 0; } /* 【trick&&吐槽】 6 3 4 1 2 1 2 【题意】 【分析】 【时间复杂度&&优化】 */
F. Fygon 2.0
建立有向图,边$a ightarrow b$表示$aleq b$,那么每个SCC中的变量都要相等。
缩完点之后得到一个$n$个点的DAG,那么在渐进意义下,去掉等号时间复杂度不变,总复杂度为$n!$,而实际复杂度为拓扑序的个数,状压DP即可。
时间复杂度$O(n2^n)$。
#include<cstdio> typedef long long ll; const int N=50; int n,m,i,j,k; int g[N][N],f[N],e[N]; char s[100]; int vis[500],mark[N]; ll dp[1<<20]; inline int id(char x){ if(x=='1')return -1; if(x=='n')return -1; if(vis[x]==-1)vis[x]=m++; return vis[x]; } inline void add(int x,int y){//x<=y if(x<0||y<0)return; g[x][y]=1; } int F(int x){return f[x]==x?x:f[x]=F(f[x]);} inline void merge(int x,int y){ if(F(x)!=F(y))f[f[x]]=f[y]; } ll gcd(ll a,ll b){return b?gcd(b,a%b):a;} int main(){ freopen("fygon20.in", "r", stdin); freopen("fygon20.out", "w", stdout); scanf("%d",&n); n--; for(i=0;i<500;i++)vis[i]=-1; while(n--){ scanf("%s",s);//for scanf("%s",s); int A=id(s[0]); scanf("%s",s);//in scanf("%s",s); int L=id(s[6]); scanf("%s",s); int R=id(s[0]); add(L,A); add(A,R); } for(k=0;k<m;k++)for(i=0;i<m;i++)for(j=0;j<m;j++)g[i][j]|=g[i][k]&&g[k][j]; for(i=0;i<m;i++)f[i]=i; for(i=0;i<m;i++)for(j=0;j<m;j++)if(g[i][j]&&g[j][i])merge(i,j); for(i=0;i<m;i++)mark[i]=-1; n=0; for(i=0;i<m;i++)if(mark[F(i)]<0){ mark[f[i]]=n++; } for(i=0;i<m;i++)for(j=0;j<m;j++)if(mark[f[i]]!=mark[f[j]]&&g[i][j])e[mark[f[i]]]|=1<<mark[f[j]]; dp[0]=1; for(i=0;i<1<<n;i++)if(dp[i])for(j=0;j<n;j++)if(!(i>>j&1)&&!(e[j]&i))dp[i|(1<<j)]+=dp[i]; ll U=dp[(1<<n)-1],D=1; for(i=2;i<=n;i++)D*=i; ll gc=gcd(U,D); U/=gc,D/=gc; printf("%d %lld/%lld",n,U,D); } /* 2 for i in range(1, n): lag 4 for i in range(1, n): for j in range(1, i): for k in range(j, j): lag 4 for i in range(1, n): for j in range(1, i): for k in range(i, j): lag */
G. Grand Test
求出DFS树,对于一条非树边$(u,v)$,暴力将$u$到$v$路径上的树边染上这条非树边的颜色。
若一条树边被染了两次色,则说明对应的两个简单环有公共边。
仅保留两个简单环,任取两个度数至少为$3$的点作为起点和终点,然后爆搜出所有路径即可,一定恰好有$3$条简单路径。
时间复杂度$O(n+m)$。
#include<cstdio> #include<algorithm> #include<set> using namespace std; typedef pair<int,int>P; const int N=100010,M=200010; int Case,n,m,i,x,y,g[N],v[M<<1],nxt[M<<1],ed; int vis[N],dfn,flag,f[N],d[N]; P col[N],A,B; int S,T,p[N]; set<P>e; inline void add(int x,int y){ d[x]++; v[++ed]=y;nxt[ed]=g[x];g[x]=ed; } void dfs(int x,int y){ f[x]=y; vis[x]=++dfn; for(int i=g[x];i;i=nxt[i]){ int u=v[i]; if(u==y)continue; if(!vis[u]){ dfs(u,x); }else if(vis[u]<vis[x]){ int j=x; if(flag)continue; while(j!=u){ if(col[j].first){ flag=1; A=P(x,u);//down up B=col[j]; break; } col[j]=P(x,u); j=f[j]; } } } } inline void push(int x,int y){ if(x>y)swap(x,y); e.insert(P(x,y)); } inline void go(int x,int y){ push(x,y); while(x!=y){ push(x,f[x]); x=f[x]; } } void dfs2(int x,int y,int z){ p[z]=x; if(x==T){ printf("%d",z); for(int i=1;i<=z;i++)printf(" %d",p[i]); puts(""); return; } for(int i=g[x];i;i=nxt[i])if(v[i]!=y)dfs2(v[i],x,z+1); } void solve(){ scanf("%d%d",&n,&m); for(i=1;i<=n;i++)g[i]=vis[i]=f[i]=0; ed=dfn=flag=0; for(i=1;i<=n;i++)col[i]=P(0,0); while(m--){ scanf("%d%d",&x,&y); add(x,y); add(y,x); } for(i=1;i<=n;i++)if(!vis[i]){ dfs(i,0); } if(!flag){ puts("-1"); return; } e.clear(); go(A.first,A.second); go(B.first,B.second); for(i=1;i<=n;i++)g[i]=d[i]=0; ed=0; for(set<P>::iterator it=e.begin();it!=e.end();it++){ x=it->first; y=it->second; add(x,y); add(y,x); } S=T=0; for(i=1;i<=n;i++)if(d[i]>2){ if(!S)S=i; else T=i; } printf("%d %d ",S,T); dfs2(S,0,1); } int main(){ freopen("grand.in", "r", stdin); freopen("grand.out", "w", stdout); scanf("%d",&Case); while(Case--)solve(); } /* 6 6 3 6 3 4 1 4 1 2 1 3 2 3 */
H. Hidden Supervisors
贪心求出每个连通块的最大匹配、根的匹配情况以及内部还未匹配的点数。
对于所有根已经匹配的连通块,将其直接连到$1$上最优。
对于剩下的连通块,按内部未匹配点数从大到小依次贪心连边即可。
时间复杂度$O(nlog n)$。
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { } #define MS(x, y) memset(x, y, sizeof(x)) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; } const int N = 1e5 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f; template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; } int casenum, casei; int n; int fa[N]; int match[N]; vector<int>son[N]; vector<int>nomatch; int ANS; void dfs(int x) { match[x] = 0; for(auto y : son[x]) { dfs(y); if(!match[y] && !match[x]) { match[y] = x; match[x] = y; ++ANS; } if(!match[y])nomatch.push_back(y); } } struct A { int sz; int rt; vector<int>vt; bool operator < (const A & b)const { return sz > b.sz; } }a[N]; int main() { freopen("hidden.in", "r", stdin); freopen("hidden.out", "w", stdout); while(~scanf("%d",&n)) { vector<int>rt; rt.push_back(1); for(int i = 1; i <= n; ++i) { son[i].clear(); } for(int i = 2; i <= n; ++i) { scanf("%d", &fa[i]); if(fa[i] == 0) { rt.push_back(i); } else { son[fa[i]].push_back(i); } } ANS = 0; int rtsz = rt.size(); int g = 0; vector<int>one; for(int i = 0; i < rtsz; ++i) { nomatch.clear(); int x = rt[i]; dfs(x); if(x == 1 || match[x]) { fa[x] = 1; for(auto y : nomatch) { one.push_back(y); } if(x == 1 && !match[1]) { one.push_back(1); } } else { ++g; a[g].sz = nomatch.size(); a[g].rt = x; a[g].vt = nomatch; } } sort(a + 1, a + g + 1); // //printf("treenum = %d ", g); // for(int i = 1; i <= g; ++i) { int x = a[i].rt; if(one.size()) { int ff = one.back(); fa[x] = ff; one.pop_back(); ++ANS; } else { fa[x] = 1; one.push_back(x); } for(auto y : a[i].vt) { one.push_back(y); } } printf("%d ", ANS); for(int i = 2; i <= n; ++i)printf("%d ", fa[i]); puts(""); } return 0; } /* 【trick&&吐槽】 【题意】 【分析】 【时间复杂度&&优化】 */
I. Intelligence in Perpendicularia
答案$=$包围盒周长$-$图形周长。
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { } #define MS(x, y) memset(x, y, sizeof(x)) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; } const int N = 1e3 + 10, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f; template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; } int casenum, casei; int n; const LL INF = 1e9; LL maxx, minx, maxy, miny; struct A { LL x, y; }a[N]; int main() { freopen("intel.in", "r", stdin); freopen("intel.out", "w", stdout); scanf("%d", &n); maxx = -INF, maxy = -INF, minx = INF, miny = INF; for(int i = 0; i < n; i ++){ scanf("%lld%lld", &a[i].x, &a[i].y); gmax(maxx, a[i].x); gmax(maxy, a[i].y); gmin(minx, a[i].x); gmin(miny, a[i].y); }a[n] = a[0]; LL ans = 0; for(int i = 0; i < n; i ++){ ans += abs(a[i].x - a[i + 1].x) + abs(a[i].y - a[i + 1].y); } ans -= (maxx - minx) * 2 + (maxy - miny) * 2; printf("%lld ", ans); return 0; } /* 【trick&&吐槽】 【题意】 【分析】 【时间复杂度&&优化】 */
J. Joker
分块维护凸壳。
K. Kotlin Island
枚举行列分别切了几刀即可。
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { } #define MS(x, y) memset(x, y, sizeof(x)) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; } const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f; template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; } int casenum, casei; int n, m, g; char s[105][105]; bool solve() { MS(s, 0); int y = (n - 1) / 2; int x = (m - 1) / 2; for(int i = 0; i <= y; ++i) { for(int j = 0; j <= x; ++j) { if( (i + 1) * (j + 1) == g) { for(int ii = 1; ii <= n; ++ii) { for(int jj = 1; jj <= m; ++jj) { if(ii % 2 == 0 && ii <= i * 2 || jj % 2 == 0 && jj <= j * 2) { s[ii][jj] = '#'; } else { s[ii][jj] = '.'; } } } return 1; } } } return 0; } int main() { freopen("kotlin.in", "r", stdin); freopen("kotlin.out", "w", stdout); while(~scanf("%d%d%d",&n, &m, &g)) { if(!solve())puts("Impossible"); else { for(int i = 1; i <= n; ++i)puts(s[i] + 1); } } return 0; } /* 【trick&&吐槽】 【题意】 【分析】 【时间复杂度&&优化】 */
L. Little Difference
若$n=2^k$形式则有无穷多个解,否则只能是$n=a^k$或$n=a^x(a+1)^y$的形式。
枚举$x,y$后二分$a$即可。
#include<cstdio> typedef long long ll; const ll lim=1000000000000000010LL; ll n; int ans; inline ll mul(ll a,ll b){ if(a>lim/b)return lim; a*=b; if(a>lim)a=lim; return a; } inline ll po(ll a,int b){ ll t=1; while(b--){ t=mul(t,a); if(t>=lim)return lim; } return t; } inline ll get1(int k){ ll l=2,r=n,mid; while(l<=r){ mid=(l+r)>>1; ll t=po(mid,k); if(t==n)return mid; if(t<n)l=mid+1;else r=mid-1; } return 2; } inline ll get2(int i,int j){ ll l=2,r=n,mid; while(l<=r){ mid=(l+r)>>1; ll t=mul(po(mid,i),po(mid+1,j)); if(t==n)return mid; if(t<n)l=mid+1;else r=mid-1; } return 2; } int main(){ freopen("little.in", "r", stdin); freopen("little.out", "w", stdout); scanf("%lld",&n); if(n<=2)return puts("-1"),0; if(n==(n&-n))return puts("-1"),0; //a^k for(int _=0;_<2;_++){ for(int k=1;k<=70;k++){ ll t=get1(k);//t>=2 if(po(t,k)==n){ if(_==0)ans++; else{ printf("%d",k); for(int o=1;o<=k;o++)printf(" %lld",t); puts(""); } } } for(int i=1;i<=70;i++)for(int j=1;j<=70;j++){ ll t=get2(i,j);//t>=2 if(mul(po(t,i),po(t+1,j))==n){ if(_==0)ans++; else{ printf("%d",i+j); for(int o=1;o<=i;o++)printf(" %lld",t); for(int o=1;o<=j;o++)printf(" %lld",t+1); puts(""); } } } if(_==0)printf("%d ",ans); } } /* 8589934592 2176782336 1000000000000000000 */