题意:给出一个有(n)个结点的有向图,边有边权。有(q)组询问,每次给出(s,t,k),问从(s)到(t)至少经过(k)条边的最短路。
(n leq 50, \, q leq 10^5, \, k leq 10^4)
首先,注意到(n)非常小这个性质。对于很多这类点数少,询问不易维护也不复杂的图论题,可以用矩阵来做。
我们设原图的邻接矩阵为(G),并定义矩阵的二元运算(igotimes)为:
那么,令(A^k = underbrace{A igotimes A cdots A}_{k ext{ times}}),那么((G^k)_{ij})就等于从(i)到(j)恰好走(k)步的最短路。因此,每次询问的答案就是(G^k igotimes S),其中(S)为图floyd后得到的邻接矩阵。
接下来,让我们考虑这样一个暴力:一开始对于所有可能的路径长度(l space (l leq k + n )),求出(G^l igotimes S)。这样预处理是(O(n^3 k)),询问是(O(1))。
这样做的话,预处理复杂过高,但每次询问能允许更高的复杂度((O(n)))。注意到,询问要求的只是一个矩阵上的一个元素的罢了。因此,如果我们能把所有(G^k igotimes S)都表示为(A igotimes B)的形式,并且所有可能的(A)和(B)的总数量可以接受,就可以了。这也相当于把所有(k)拆分为两个数。
答案是分块。令块大小为(H(k)),那么我们可以把(k)分为(leftlfloor frac {k} {H(k)} ight floor imes H(k) + k mod H(k))的形式。因此,我们令(H(k) = sqrt k),那么,只要求出所有(A_i = G^{isqrt k}, B_i = G_i igotimes S),就可以(O(n))回答每次询问,且(|A| = |B| = sqrt k),故预处理复杂度也能达到(O(n^3 sqrt k))。
时间复杂度(O(n^3 sqrt k + nq))。
#include <bits/stdc++.h>
using namespace std;
const int N = 55, BAS = 100, INF = 0x3f3f3f3f;
typedef int mat[N][N];
int n,m,q;
mat a[N * 3],b[N * 3];
void mul(mat& x,mat y,mat z) {
memset(x,0x3f,sizeof(mat));
for (int k = 1 ; k <= n ; ++ k)
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= n ; ++ j)
x[i][j] = min(x[i][j],y[i][k] + z[k][j]);
}
int main() {
int T,x,y,z,ret;
scanf("%d",&T);
while (T --) {
scanf("%d%d",&n,&m);
memset(a,0x3f,sizeof a);
memset(b,0x3f,sizeof b);
for (int i = 1 ; i <= m ; ++ i) {
scanf("%d%d%d",&x,&y,&z);
b[1][x][y] = min(b[1][x][y],z);
}
for (int i = 1 ; i <= n ; ++ i)
a[0][i][i] = 0, b[0][i][i] = 0;
for (int i = 2 ; i <= BAS + n ; ++ i)
mul(b[i],b[i-1],b[1]);
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= n ; ++ j)
a[1][i][j] = b[100][i][j];
for (int i = 2 ; i <= BAS ; ++ i)
mul(a[i],a[i-1],a[1]);
for (int k = BAS + n - 1 ; k >= 0 ; -- k)
for (int i = 1 ; i <= n ; ++ i)
for (int j = 1 ; j <= n ; ++ j)
b[k][i][j] = min(b[k][i][j],b[k+1][i][j]);
scanf("%d",&q);
for (int i = 1 ; i <= q ; ++ i) {
scanf("%d%d%d",&x,&y,&z);
ret = INF;
for (int k = 1 ; k <= n ; ++ k)
ret = min(ret,a[z/BAS][x][k] + b[z%BAS][k][y]);
if (ret != INF) printf("%d
",ret);
else puts("-1");
}
}
return 0;
}
小结:感觉分块白学了……还是只会死板地使用。