zoukankan      html  css  js  c++  java
  • sklearn各种分类器简单使用

    sklearn中有很多经典分类器,使用非常简单:1.导入数据 2.导入模型 3.fit--->predict

    下面的示例为在iris数据集上用各种分类器进行分类:

     1 #用各种方式在iris数据集上数据分类
     2 
     3 #载入iris数据集,其中每个特征向量有四个维度,有三种类别
     4 from sklearn import datasets
     5 iris = datasets.load_iris()
     6 print ("The iris' target names: ",iris.target_names)
     7 x = iris.data
     8 y = iris.target
     9 
    10 #待分类的两个样本
    11 test_vector = [[1,-1,2.6,-2],[0,0,7,0.8]]
    12 
    13 #线性回归
    14 from sklearn import linear_model
    15 linear = linear_model.LinearRegression()
    16 linear.fit(x,y)
    17 print ("linear's score: ",linear.score(x,y))
    18 print ("w:",linear.coef_)       
    19 print ("b:",linear.intercept_)  
    20 print ("predict: ",linear.predict(test_vector))
    21 
    22 #逻辑回归
    23 LR = linear_model.LogisticRegression()
    24 LR.fit(x,y)
    25 print ("LogisticRegression:",LR.predict(test_vector))
    26 
    27 #决策树
    28 from sklearn import tree
    29 TR = tree.DecisionTreeClassifier(criterion='entropy')   
    30 TR.fit(x,y)
    31 print ("DecisionTree:",TR.predict(test_vector))
    32 
    33 #支持向量机
    34 from sklearn import svm
    35 SV = svm.SVC()
    36 SV.fit(x,y)
    37 print ("svm:",SV.predict(test_vector))
    38 
    39 #朴素贝叶斯
    40 from sklearn import naive_bayes
    41 NB = naive_bayes.GaussianNB()
    42 NB.fit(x,y)
    43 print ("naive_bayes:",NB.predict(test_vector))
    44 
    45 #K近邻
    46 from sklearn import neighbors
    47 KNN = neighbors.KNeighborsClassifier(n_neighbors = 3)
    48 KNN.fit(x,y)
    49 print ("KNeighbors:",KNN.predict(test_vector))
    50 '''
    51 he iris' target names:  ['setosa' 'versicolor' 'virginica']
    52 linear's score:  0.930422367533
    53 w: [-0.10974146 -0.04424045  0.22700138  0.60989412]
    54 b: 0.192083994828
    55 predict:  [-0.50300167  2.26900897]
    56 LogisticRegression: [1 2]
    57 DecisionTree: [1 2]
    58 svm: [2 2]
    59 naive_bayes: [2 2]
    60 KNeighbors: [0 1]
    61 '''
  • 相关阅读:
    CentOS7-Jenkins安装与配置
    jQuery-Ajax H5无刷新分页
    PHP使用MongoDB(CRUD)
    PHP使用Solr(CRUD)
    yum报错:One of the configured repositories failed (CentOS-7
    maevn的nexus私库搭建
    如何分析用户的行为:5个用户分类指标,3个用户分析的重点指标
    数据分析不落地?一个案例教会你!
    数仓建设全流程(附PPT和视频)
    干货 | 一文读懂数据分析
  • 原文地址:https://www.cnblogs.com/cnXuYang/p/8436276.html
Copyright © 2011-2022 走看看