zoukankan      html  css  js  c++  java
  • HDU

    Tr A

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 4488    Accepted Submission(s): 3377

    Problem Description
    A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。
     
    Input
    数据的第一行是一个T,表示有T组数据。
    每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。
     
    Output
    对应每组数据,输出Tr(A^k)%9973。
     
    Sample Input
    2 2 2 1 0 0 1 3 99999999 1 2 3 4 5 6 7 8 9
     
    Sample Output
    2 2686
     
    Author
    xhd
     
    Source
     
    Recommend

    linle   |   We have carefully selected several similar problems for you:  1588 2256 2604 2254 3117 

    #include <map>
    #include <set>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <queue>
    #include <iostream>
    #include <stack>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <cstdlib>
    //#include <bits/stdc++.h>
    //#define LOACL
    #define space " "
    using namespace std;
    typedef long long LL;
    typedef __int64 Int;
    typedef pair<int, int> paii;
    const int INF = 0x3f3f3f3f;
    const double ESP = 1e-5;
    const double PI = acos(-1.0);
    const int MOD = 9973;
    const int MAXN = 15;
    int n, m;
    struct Matrix {
        LL m[MAXN][MAXN];
        int row, col;
    };
    Matrix ori, res, u;
    void init() {
        memset(res.m, 0, sizeof(res.m));
        ori.row = ori.col = n;
    }
    void scan_in() {
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                scanf("%d", &ori.m[i][j]);
            }
        }
    }
    Matrix multi(Matrix x, Matrix y) {
        Matrix z;
        memset(z.m, 0, sizeof(z.m));
        z.row = x.row; z.col = y.col;
        for (int i = 1; i <= x.row; i++) {
            for (int k = 1; k <= x.col; k++) {
                for (int j = 1; j <= y.col; j++) {
                    z.m[i][j] += x.m[i][k]*y.m[k][j]%MOD;
                }
                z.m[i][k] %= MOD;
            }
        }
        return z;
    }
    Matrix pow_mod(Matrix a, int x){
        Matrix b;
        b.col = a.col; b.row = a.row;
        memset(b.m, 0, sizeof(b.m));
        for (int i = 1; i <= n; i++) {
            b.m[i][i] = 1;
        }
        while(x){
            if(x&1) b = multi(a,b);
            a = multi(a, a);
            x >>= 1;
        }
        return b;
    }
    int main() {
        int T;
        scanf("%d", &T);
        while (T--) {
            scanf("%d%d", &n, &m);
            init(); scan_in();
            res = pow_mod(ori, m);
            int ans = 0;
            for (int i = 1; i <= n; i++) {
                ans += res.m[i][i];
            }
            printf("%d
    ", ans%MOD);
        }
        return 0;
    }

     

  • 相关阅读:
    codeforce 1478B B. Nezzar and Lucky Number 找规律 打表 C
    codeforce 1478C C. Nezzar and Symmetric Array 模拟 认真写 C
    Ansible自动化入门
    多线程执行传值
    js 文本框根据开始结束符号控制输入内容(IE)
    update where in 子查询的梗
    Qt中的QThread:使用QSemaphore进行多线程数据同步
    linux服务器下CPU爆满
    linux下磁盘爆满问题排查
    每日一题(算法)
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770758.html
Copyright © 2011-2022 走看看