Function Run Fun
Description We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c): if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns: 1 if a > 20 or b > 20 or c > 20, then w(a, b, c) returns: w(20, 20, 20) if a < b and b < c, then w(a, b, c) returns: w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c) otherwise it returns: w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1) This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion. Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input 1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1 Sample Output w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1 Source |
这道题没有给数据的范围,我没有考虑dp,然后就当做数学题来做,就发现里一组规律,如果x<=y<=z,那么答案一定是 1<<x。但是仍然TEL。百度后才知道数据的范围,dp就好了。
#include <map> #include <set> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <iostream> #include <stack> #include <cmath> #include <string> #include <vector> #include <cstdlib> //#include <bits/stdc++.h> //#define LOACL #define space " " using namespace std; typedef long long LL; //typedef __int64 Int; typedef pair<int, int> paii; const int INF = 0x3f3f3f3f; const double ESP = 1e-5; const double Pi = acos(-1.0); const int MOD = 1e9 + 7; const int MAXN = 10000 + 100; int dp[100][100][100]; LL solve(LL a, LL b, LL c) { if(a <= 0 || b <= 0 || c <= 0) return 1; if(a > 20 || b > 20 || c > 20) return solve(20, 20, 20); if(dp[a][b][c]) return dp[a][b][c]; if(a <= b && b <= c) dp[a][b][c] = 1<<a; else dp[a][b][c] = solve(a - 1, b, c) + solve(a-1, b-1, c) + solve(a-1, b, c-1) - solve(a-1, b-1, c-1); return dp[a][b][c]; } int main() { LL a, b, c; while (scanf("%lld%lld%lld", &a, &b, &c) != EOF) { if (a == -1 && b == -1 && c == -1) break; printf("w(%lld, %lld, %lld) = %lld ", a, b, c, solve(a, b, c)); } return 0; }