zoukankan      html  css  js  c++  java
  • Light OJ 1049 Farthest Nodes in a Tree【树的直径】

    Time Limit: 2000MS Memory Limit: 32768KB 64bit IO Format: %lld & %llu


    Description

    Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.

    Input

    Input starts with an integer T (≤ 10), denoting the number of test cases.

    Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.

    Output

    For each case, print the case number and the maximum distance.

    Sample Input

    2

    4

    0 1 20

    1 2 30

    2 3 50

    5

    0 2 20

    2 1 10

    0 3 29

    0 4 50

    Sample Output

    Case 1: 100

    Case 2: 80

    Source

    Problem Setter: Jane Alam Jan

    今天又学了一个数据结构,用来存储树和图的,叫做前向星。
    在前向星中,有一个数组head存放某个节点的第一条边的位置,通过head指向结构体中的next,就可以访问到下一条边的,运用这个原理,可以访问到这个节点的所有相邻的节点。
    struct node{
        int from; //该条边的起点
        int to;  //该条边的终点
        int val;  //该条边的权值
        int next;  //该条边的起点所连接的下一条边
    } edge[MAXN];
    对于图或者树的储存
    //储存一个起点为x, 终点为y,权值为z的边。
    //edgenum为边的计数。
    void addedge(int x, int y, int z) {
        edge[edgenum].from = x;  
        edge[edgenum].to = y;
        edge[edgenum].val = z;
        edge[edgenum].next = head[x]; 
        //把属于x的边的最后一个的“地址”赋予head[x]
        head[x] = edgenum++;
    }
    在遍历树的时候,从i节点开始,head[i]中存放着i节点最后一个边的“地址”,edge[head[i]].next指向的就是i节点的下一个,依次进行遍历。
    #include <bits/stdc++.h>
    #define MAXN 30010
    using namespace std;
    struct node{
        int from, to, val, next;
    } edge[MAXN];
    bool vis[MAXN];
    int dist[MAXN], head[MAXN], edgenum, ans, s;
    void init() {
        memset(head, -1, sizeof(head));
        edgenum = 0;
    }
    void addedge(int x, int y, int z) {
        edge[edgenum].from = x;
        edge[edgenum].to = y;
        edge[edgenum].val = z;
        edge[edgenum].next = head[x];
        head[x] = edgenum++;
    }
    void bfs(int x) {
        queue<int> que; ans = 0;
        memset(vis, false, sizeof(vis));
        memset(dist, 0, sizeof(dist));
        while (!que.empty()) que.pop();
        que.push(x); vis[x] = true;
        while (que.size()) {
            int a = que.front(); que.pop();
            for (int i = head[a]; i != -1; i = edge[i].next) {
                int b = edge[i].to;
                if (!vis[b] && dist[b] < dist[a] + edge[i].val) {
                    dist[b] = dist[a] + edge[i].val;
                    if(ans < dist[b]) {
                        ans = dist[b]; s = b;
                    }
                    vis[b] = true; que.push(b);
                }
            }
        }
    }
    int main() {
        int t, a, b, c, n;
        int cnt = 0; scanf("%d", &t);
        while (t--) {
            scanf("%d", &n); init();
            for (int i = 0; i < n-1; i++) {
                scanf("%d%d%d", &a, &b, &c);
                addedge(a, b, c); addedge(b, a, c);
            }
            bfs(0); bfs(s);
            printf("Case %d: %d
    ", ++cnt, ans);
        }
        return 0;
    }

    
    
  • 相关阅读:
    CSS3动画(性能篇)
    格拉西安《智慧书》中最有价值的23条法则
    HTML5系列四(特征检测、Modernizr.js的相关介绍)
    CSS3系列四(Media Queries移动设备样式)
    高性能JavaScript笔记三(编程实践)
    高性能JavaScript笔记二(算法和流程控制、快速响应用户界面、Ajax)
    LABjs(类似于LazyLoad,但它更加方便管理依赖关系)
    高性能JavaScript笔记一(加载和执行、数据访问、DOM编程)
    《代码大全》阅读笔记-34-软件工艺的话题
    《代码大全》阅读笔记-33-个人性格(personal character)
  • 原文地址:https://www.cnblogs.com/cniwoq/p/6770875.html
Copyright © 2011-2022 走看看