zoukankan      html  css  js  c++  java
  • HDU

    Anniversary party

    时限:1000ms

    Problem Description
    There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each employee, so everyone has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests' conviviality ratings.
    Input
    Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding employee. Conviviality rating is an integer number in a range from -128 to 127. After that go T lines that describe a supervisor relation tree. Each line of the tree specification has the form: L K ,It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line 0 0
    Output
    Output should contain the maximal sum of guests' ratings.
    Sample Input
    7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5 0 0
    Sample Output
    5
     
     
    题意:
    某某大学要开party,每个员工有一个活跃度。每个员工都不想跟他的直接上司见面,求party的最大活跃度。
    思路:
    树形dp,容易得到状态转移方程

    dp[i][1] += dp[j][0];   i到下属j不到。

    dp[i][0] +=max(dp[j][1],dp[j][0]);  i不到。

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 6010;
    int n, dp[maxn][2], fa[maxn];  
    vector<int> G[maxn];  
    void dfs(int root) {
        for(int i=0;i<G[root].size();i++) {
            dfs(G[root][i]);  
        }  
        for(int i=0;i<G[root].size();i++) {
            dp[root][0] += max(dp[G[root][i]][0],dp[G[root][i]][1]);  
            dp[root][1] += dp[G[root][i]][0];  
        }  
    }  
    int main() {
        int u,v;  
        while(scanf("%d", &n) != EOF) {
            memset(fa,-1, sizeof(fa)); 
            memset(dp,0,sizeof(dp)); 
            for (int i = 1; i <= n; i++) { 
                scanf("%d", &dp[i][1]); G[i].clear();
            }  
            while(scanf("%d%d", &u,&v) != EOF) {
                if (v == 0 && v == 0) break;
                fa[u] = v;  
                G[v].push_back(u);  
            }  
            int root=1;  
            while(fa[root]!=-1) root=fa[root];  
            dfs(root);  
            printf("%d
    ",max(dp[root][1],dp[root][0]));  
        }  
        return 0;  
    }  
  • 相关阅读:
    常见的无损压缩算法
    多媒体基本概念
    电子商务
    Java正则表达式
    Java 注解
    java泛型
    Java的反射机制
    Java 动态代理
    函数调用约定_stdcall[转]
    要研究的东东啊
  • 原文地址:https://www.cnblogs.com/cniwoq/p/7246307.html
Copyright © 2011-2022 走看看