zoukankan      html  css  js  c++  java
  • [LeetCode] 973. K Closest Points to Origin

    We have a list of points on the plane.  Find the K closest points to the origin (0, 0).

    (Here, the distance between two points on a plane is the Euclidean distance.)

    You may return the answer in any order.  The answer is guaranteed to be unique (except for the order that it is in.)

    Example 1:

    Input: points = [[1,3],[-2,2]], K = 1
    Output: [[-2,2]]
    Explanation: 
    The distance between (1, 3) and the origin is sqrt(10).
    The distance between (-2, 2) and the origin is sqrt(8).
    Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
    We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
    

    Example 2:

    Input: points = [[3,3],[5,-1],[-2,4]], K = 2
    Output: [[3,3],[-2,4]]
    (The answer [[-2,4],[3,3]] would also be accepted.)

    Note:

    1. 1 <= K <= points.length <= 10000
    2. -10000 < points[i][0] < 10000
    3. -10000 < points[i][1] < 10000

    最接近原点的K个点。

    题意是给一些点的坐标(以二维数组表示)和一个数字K。求距离最靠近原点的前K个点。

    求前K个XX的问题,十有八九可以用heap/priority queue解决,这个题也不例外。我这里给出pq的解法,用pq创建一个最小堆,将每个坐标与原点的距离加入pq。求距离就是初中数学的勾股定理。

    时间O(nlogk)

    空间O(n)

    Java实现

     1 class Solution {
     2     public int[][] kClosest(int[][] points, int K) {
     3         PriorityQueue<int[]> pq = new PriorityQueue<>(K,
     4                 (o1, o2) -> o1[0] * o1[0] + o1[1] * o1[1] - o2[0] * o2[0] - o2[1] * o2[1]);
     5         for (int[] point : points) {
     6             pq.add(point);
     7         }
     8         int[][] res = new int[K][2];
     9         for (int i = 0; i < K; i++) {
    10             res[i] = pq.poll();
    11         }
    12         return res;
    13     }
    14 }

    这道题还有一个类似快速排序的做法,也值得掌握。

    时间O(n), worst case, O(n^2)

    空间O(1)

    Java实现

     1 class Solution {
     2     public int[][] kClosest(int[][] points, int K) {
     3         int len = points.length;
     4         int l = 0;
     5         int r = len - 1;
     6         while (l <= r) {
     7             int mid = helper(points, l, r);
     8             if (mid == K) {
     9                 break;
    10             }
    11             if (mid < K) {
    12                 l = mid + 1;
    13             } else {
    14                 r = mid - 1;
    15             }
    16         }
    17         return Arrays.copyOfRange(points, 0, K);
    18     }
    19 
    20     private int helper(int[][] points, int left, int right) {
    21         int[] pivot = points[left];
    22         while (left < right) {
    23             while (left < right && compare(points[right], pivot) >= 0) {
    24                 right--;
    25             }
    26             points[left] = points[right];
    27             while (left < right && compare(points[left], pivot) <= 0) {
    28                 left++;
    29             }
    30             points[right] = points[left];
    31         }
    32         points[left] = pivot;
    33         return left;
    34     }
    35 
    36     private int compare(int[] p1, int[] p2) {
    37         return p1[0] * p1[0] + p1[1] * p1[1] - p2[0] * p2[0] - p2[1] * p2[1];
    38     }
    39 }

    相关题目

    215. Kth Largest Element in an Array

    912. Sort an Array

    973. K Closest Points to Origin

    LeetCode 题目总结

  • 相关阅读:
    点击有惊喜
    模态框案例
    DOM操作
    定时器
    函数和object
    shell 判断文件出现次数
    shell 判断路径
    shell 循环数组
    shell 判断为空打印
    shell 示例1 从1叠加到100
  • 原文地址:https://www.cnblogs.com/cnoodle/p/12485469.html
Copyright © 2011-2022 走看看