zoukankan      html  css  js  c++  java
  • [HNOI2018]转盘

    [HNOI2018]转盘

    给你一个 (n) 元环, 你可以在 (0) 时刻从任意一个位置出发, 每一秒可以选择往后或者留在原地每个点有个参数 (T_i) , 当你走到 (i) 的时间 (tge T_i) 时你就可以把 (i) 标记问你把整个环上的点都标记最小需要多长时间, 带修改 (T_i), 强制在线.

    ( ext{Solution:})

    只看题目比较难发现其中的性质,我们来手模一下。

    比如 (T = 1, 2, 5, 4, 5​)

    标记每个点的时间为 (1, 2, 5, 6, 7)

    显然 (3, 4, 5, 6, 7) 也是一组合法解。

    这启示我们如果从将题目转换一下,变成:

    假设你 (t) 时刻在某个点,每次可以向前走或者留在原地,然后 (t)(1),开始所有的点都出现,每个点在 (T_i) 时间消失,求一个最小的 (t) 使得在所有点都消失前访问所有点.

    显然一直走会不会更差,如 (3, 4, 5, 6, 7) 不会比 (1, 2, 5, 6, 7) 差。

    这下时间就是连续的,这也方便我们讨论。


    再次简化:

    在一个长度为 (2n) 的序列上(断环成链),从点 (iin[n,2n))出发

    [forall jin(1,2n],\ t-(i-j) ge T_j\ Rightarrow t ge T_j+i - j\ Rightarrow t_{min}= max{ T_j-j}+i ]

    (t_{min})


    仔细观察式子:

    考虑枚举 (j) 看哪些 (i) 满足i的后缀最大值为 (a_j) ,从后往前扫,扫到一个数就更新后缀最大值,然后 (chkmin)

    这样扫描每次 O(n),复杂度不对,没有充分利用每次修该前的信息,于是我们考虑将没有影响的一部分合并,可以用线段树来实现。

    线段树每个节点维护该区间的最大 (a) ,以及答案,

    向上合并的时候是在左区间递归找满足条件的 (i​) ,往左还是往右找分类讨论一下,再选取最小的答案即可(比较难理解画一画,想一想)。

    #include <set>
    #include <cmath>
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <assert.h>
    #include <algorithm>
    
    using namespace std;
    
    #define LL long long
    #define debug(...) fprintf(stderr, __VA_ARGS__)
    #define GO debug("GO
    ")
    
    inline int rint() {
        register int x = 0, f = 1; register char c;
        while (!isdigit(c = getchar())) if (c == '-') f = -1;
        while (x = (x << 1) + (x << 3) + (c ^ 48), isdigit(c = getchar()));
        return x * f;
    }
    
    template<typename T> inline void chkmin(T &a, T b) { a > b ? a = b : 0; }
    template<typename T> inline void chkmax(T &a, T b) { a < b ? a = b : 0; }
    
    const int maxN = 2e5 + 10;
    
    int n, m, q;
    int ans[maxN * 4], mx[maxN * 4], T[maxN];
    
    #define ls (x<<1)
    #define rs (x<<1|1)
    
    int query(int x, int l, int r, int y) {
        if (l == r) return l + max(mx[x], y);
        int mid = (l + r) >> 1;
        if (mx[rs] >= y) return min(ans[x], query(rs, mid + 1, r, y));
        else return min(mid + 1 + y, query(ls, l, mid, y));
    }
    
    void pu(int x, int l, int r) {
        mx[x] = max(mx[ls], mx[rs]);
        ans[x] = query(ls, l, (l + r) >> 1, mx[rs]);
    }
    
    void Build(int x, int l, int r) {
        if (l == r) {
            mx[x] = ans[x] = T[l] - l;
            return;
        }
        int mid = (l + r) >> 1;
        Build(ls, l, mid);
        Build(rs, mid + 1, r);
        pu(x, l, r);
    }
    
    void change(int x, int l, int r, int y) {
        if (l == r) {
            ans[x] = mx[x] = T[l] - l;
            return;
        }
        int mid = (l + r) >> 1;
        if (y <= mid) change(ls, l, mid, y);
        else change(rs, mid + 1, r, y);
        pu(x, l, r);
    }
    
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("xhc.in", "r", stdin);
        freopen("xhc.out", "w", stdout);
    #endif
        n = rint(), m = rint(), q = rint();
        for (int i = 1; i <= n; ++ i) 
            T[i] = T[i + n] = rint();
        Build(1, 1, n * 2);
        int lastans = ans[1] + n - 1;
        printf("%d
    ", lastans);
        while (m --) {
            int x = rint(), y = rint();
            if (q) x ^= lastans, y ^= lastans;
            T[x] = T[x + n] = y;
            change(1, 1, 2 * n, x);
            change(1, 1, 2 * n, x + n);
            lastans = ans[1] + n - 1;
            printf("%d
    ", lastans);
        }
    }
    
  • 相关阅读:
    C#监听文件
    用bootstrapValidator来验证UEditor
    .net 在不同情况下调用带soapheader的webservice的方式
    MyBatis1
    随堂笔记2
    数学复习笔记 2018年-2019年
    药方
    随堂笔记一
    友谊藏在门背后,2
    友谊藏在门背后
  • 原文地址:https://www.cnblogs.com/cnyali-Tea/p/10579593.html
Copyright © 2011-2022 走看看