*题目描述:
如图所示为某生态系统的食物网示意图,据图回答第1小题
现在给你n个物种和m条能量流动关系,求其中的食物链条数。
物种的名称为从1到n编号
M条能量流动关系形如
a1 b1
a2 b2
a3 b3
……
am-1 bm-1
am bm
其中ai bi表示能量从物种ai流向物种bi,注意单独的一种孤立生物不算一条食物链
*输入:
第一行两个整数n和m,接下来m行每行两个整数ai bi描述m条能量流动关系。
(数据保证输入数据符号生物学特点,且不会有重复的能量流动关系出现)
1<=N<=100000 0<=m<=200000
题目保证答案不会爆 int
*输出:
一个整数即食物网中的食物链条数
*样例输入:
10 16
1 2
1 4
1 10
2 3
2 5
4 3
4 5
4 8
6 5
7 6
7 9
8 5
9 8
10 6
10 7
10 9
*样例输出:
9
*题解:
拓扑排序+瞎jb乱DP。
生物课上想到的算食物链数量的方法。然后发现居然真的有这种题。。。然后写了两发就过了。(细节:只有一个点的不算生物链)
*代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif
#ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout)
#endif
#define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
#define cabs(_x) ((_x) < 0 ? (- (_x)) : (_x))
char B[1 << 15], *S = B, *T = B;
inline int F()
{
R char ch; R int cnt = 0; R bool minus = 0;
while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
ch == '-' ? minus = 1 : cnt = ch - '0';
while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
return minus ? -cnt : cnt;
}
#define maxn 100010
#define maxm 300010
struct Edge
{
Edge *next;
int to;
}*last[maxn], e[maxm], *ecnt = e;
inline void link(R int a, R int b)
{
*++ecnt = (Edge) {last[a], b}; last[a] = ecnt;
}
int in[maxn], out[maxn], f[maxn];
std::queue<int> q;
int main()
{
// setfile();
R int n = F(), m = F();
for (R int i = 1; i <= m; ++i)
{
R int a = F(), b = F();
link(a, b); ++in[b]; ++out[a];
}
R int s = 0, t = n + 1;
for (R int i = 1; i <= n; ++i)
{
if (!in[i]) link(s, i), ++in[i];
else if (!out[i]) link(i, t);
}
q.push(s); f[s] = 1;
while (!q.empty())
{
R int now = q.front(); q.pop();
for (R Edge *iter = last[now]; iter; iter = iter -> next)
{
f[iter -> to] += f[now];
if (--in[iter -> to] == 0) q.push(iter -> to);
}
}
printf("%d
", f[t] );
return 0;
}