zoukankan      html  css  js  c++  java
  • Audio(2)-audio数据控制块audio_track_cblk_t

    • 背景介绍

    AudioTrack与AudioFlinger之间的数据传输分为两种方式,MODE_STATIC与MODE_STREAM。

    1. MODE_STATIC:static方式适用于数据较小,实时性比较高的情形,比如ring,系统铃声等。这种模式下,是在AT端创建共享内存,一次性将数据copy到buffer中,然后传递到AF端。
    2. MODE_STREAM:stream方式适用于数据较大,media播放等更多其他的情况,也比较复杂。在这种模式下,共享内存是由AF创建的,然后通过生产者-消费者的模式,进行数据的传输。即AT是数据的生产者,AF是数据的消费者。这个数据读写的控制,是由struct audio_track_cblk_t来实现的,这篇文章主要来分析这个控制块的实现。
    • audio_track_cblk_t的创建
    1. AT与AF之间,是通过IAudioTrack接口进行交互的,而这个audio_track_cblk_t的创建,就是在AT调用AF创建IAudioTrack接口的同时创建的。
    2. AT->AF.createTrack()//在AT.play之前,必须要与AF建立联系
    3. PlaybackThread.createTrack_l() //创建AT与AF之间实际功能调用的实现者
    4. new Track() //创建Track,并把它包装在实现了IAudioTrack接口的TrackHandle中
    5. TrackBase::TrackBase()//Track的父类,创建audio_track_cblk_t的工作是在TrackBase的构造函数中进行的
        size_t size = sizeof(audio_track_cblk_t); //计算audio_track_cblk_t的大小
        uint8_t channelCount = popcount(channelMask);
        size_t bufferSize = frameCount*channelCount*sizeof(int16_t); //计算实际数据buffer大小
        if (sharedBuffer == 0) {
            size += bufferSize; //共享内存实际分配大小为:cblk + data buffer
        }
    
        if (client != NULL) {
            mCblkMemory = client->heap()->allocate(size); //分配共享内存,实际的实现会在其他文章中分析,这里之分析对共享内存的使用
            if (mCblkMemory != 0) {
                mCblk = static_cast<audio_track_cblk_t *>(mCblkMemory->pointer()); // audio_track_cblk_t* mCblk,指向共享内存的地址
                if (mCblk != NULL) { // construct the shared structure in-place.
                    new(mCblk) audio_track_cblk_t(); //这里是C++的语法:
                                 //(1)struct可以像class一样,使用new来创建。
                       //(2)new创建的对象并没有在heap上,而是特定在mCblk指向的内存上创建,这样这块共享
                                 // 内存的结构就变成了: |<- audio_track_cblk_t ->| ...data buffer... |
    // clear all buffers mCblk->frameCount = frameCount; //初始化cblk中的一些属性 mCblk->sampleRate = sampleRate; mChannelCount = channelCount; mChannelMask = channelMask; if (sharedBuffer == 0) { //sharedBuffer==0表示MODE_STREAM mBuffer = (char*)mCblk + sizeof(audio_track_cblk_t); //data buffer的地址,需要将audio_track_cblk_t的大小跳过 memset(mBuffer, 0, frameCount*channelCount*sizeof(int16_t)); //clear buffer // Force underrun condition to avoid false underrun callback until first data is // written to buffer (other flags are cleared) mCblk->flags = CBLK_UNDERRUN_ON; } else { //否则就是MODE_STATIC,数据buffer直接使用由AT传递过来的已经申请好的共享内存 mBuffer = sharedBuffer->pointer(); } mBufferEnd = (uint8_t *)mBuffer + bufferSize; } } else { ALOGE("not enough memory for AudioTrack size=%u", size); client->heap()->dump("AudioTrack"); return; } } else { ……………… }
    •  audio_track_cblk_t的声明
    struct audio_track_cblk_t
    {
                    ...省略...
                    // next 4 are offsets within "buffers"
        volatile    uint32_t    user; //user代表AT,生产者已经写了多少个frame
        volatile    uint32_t    server; //server代表AF,消费者已经读取了多少个frame
                    uint32_t    userBase; //与user结合使用,使之成为一个环形FIFO
                    uint32_t    serverBase; //同userBase
    
                    // if there is a shared buffer, "buffers" is the value of pointer() for the shared
                    // buffer, otherwise "buffers" points immediately after the control block
                    void*       buffers; //实际数据buffer的起始地址
                          //如果是MODE_STREAM,buffers紧跟在cblk后面
                          //如果是MODE_STATIC,buffers指向sharedBuffer
    uint32_t frameCount; //数据buffer的大小,以Frame为单位
              //以下3个loopXXX是与循环播放有关 uint32_t loopStart; uint32_t loopEnd; // read-only for server, read/write for client int loopCount; // read/write for client private: uint32_t mVolumeLR; //音量相关 public: uint32_t sampleRate; //采样率 // NOTE: audio_track_cblk_t::frameSize is not equal to AudioTrack::frameSize() for // 8 bit PCM data: in this case, mCblk->frameSize is based on a sample size of // 16 bit because data is converted to 16 bit before being stored in buffer uint8_t frameSize; //一单位frame的大小 ...省略... public: volatile int32_t flags;// Since the control block is always located in shared memory, this constructor // is only used for placement new(). It is never used for regular new() or stack. audio_track_cblk_t(); //cblk总是new在指定的共享内存上,而不是堆栈上 uint32_t stepUser(uint32_t frameCount); //AT更新写位置 bool stepServer(uint32_t frameCount); //AF更新读位置 void* buffer(uint32_t offset) const; //返回可写的地址 uint32_t framesAvailable(); //还有多少空间可写 uint32_t framesAvailable_l(); uint32_t framesReady(); //是否有可读数据 bool tryLock();          ...省略... };
    •  AT写数据流程
    1. framesAvailable()判断是否有可用空间 
      uint32_t audio_track_cblk_t::framesAvailable_l()
      {
          uint32_t u = user;
          uint32_t s = server;
      
          if (flags & CBLK_DIRECTION_MSK) { //以前的out标志,放在了flag中?表示AT?
      //计算读的起始位置,取读位置与循环起始位置两者中较小的 uint32_t limit
      = (s < loopStart) ? s : loopStart;
      //可读 = user - limit
      //可写 = frameCount - 可读
      //可写 = frameCount - (u - limit)
      //可写 = frameCount + limit - u
      return limit + frameCount - u; } else { ....... } }
    2. buffer()得到写空间起始地址
      void* audio_track_cblk_t::buffer(uint32_t offset) const
      {
         //这里传入的offset就是cblk->user,为了在有限长度的buffer内,模拟环形FIFO队列,就有了个userBase。
      //当数据写满整个buffer的大小以后,会继续增加user的值,那么user*frameSize的大小就会超过cblk->buffers+(frameCount*frameSize)
      //这时就需要userBase来进行调整,user每增加frameCount整个buffer的帧数,userBase会增加同样的大小,
      //来保证user-userBase始终小于frameCount,这样cblk->buffers + (user - userBase)*frameSize就可以得到当前的写位置,
      //这个写位置永远不会超过实际cblk->buffer + frameCount*frameSize。
      //环形FIFO的精髓就在这
      return (int8_t *)buffers + (offset - userBase) * frameSize; }
    3. stepUser()更新写位置
      /*获取了写位置,并写入数据后,需要更新user的位置*/
      uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount) {
      uint32_t u = user; u += frameCount; //frameCount表示这次写了多少个frame, ...省略... uint32_t fc = this->frameCount; //整个buffer有多少个frame if (u >= fc) { //如果已写的frame超过整个buffer // common case, user didn't just wrap if (u - fc >= userBase ) { //userBase + frameCount小于user,就需要使userBase同样调整 userBase += fc; } } else if (u >= userBase + fc) { //同上 // user just wrapped userBase += fc; } user = u; //更新user ...省略... return u; }
    • AF读数据流程
    1. frameReady()看是否有数据可以读 
      uint32_t audio_track_cblk_t::framesReady()
      {
          uint32_t u = user;
          uint32_t s = server;
      
          if (flags & CBLK_DIRECTION_MSK) {
              if (u < loopEnd) { //如果还未写到循环结束
                  return u - s;
              } else {
                  // do not block on mutex shared with client on AudioFlinger side
                  if (!tryLock()) {
                      ALOGW("framesReady() could not lock cblk");
                      return 0;
                  }
                  uint32_t frames = UINT_MAX;
                  if (loopCount >= 0) {
                      frames = (loopEnd - loopStart)*loopCount + u - s;
                  }
                  lock.unlock();
                  return frames;
              }
          } else {
              return s - u;
          }
      }
    2. stepServe()更新serve 
      bool audio_track_cblk_t::stepServer(uint32_t frameCount)
      {
          uint32_t s = server;
          bool flushed = (s == user);
      
          s += frameCount;
          if (flags & CBLK_DIRECTION_MSK) {
              // Mark that we have read the first buffer so that next time stepUser() is called
              // we switch to normal obtainBuffer() timeout period
              if (bufferTimeoutMs == MAX_STARTUP_TIMEOUT_MS) {
                  bufferTimeoutMs = MAX_STARTUP_TIMEOUT_MS - 1;
              }
              // It is possible that we receive a flush()
              // while the mixer is processing a block: in this case,
              // stepServer() is called After the flush() has reset u & s and
              // we have s > u
              if (flushed) {
                  ALOGW("stepServer occurred after track reset");
                  s = user;
              }
          }
      
          if (s >= loopEnd) {
              ALOGW_IF(s > loopEnd, "stepServer: s %u > loopEnd %u", s, loopEnd);
              s = loopStart;
              if (--loopCount == 0) {
                  loopEnd = UINT_MAX;
                  loopStart = UINT_MAX;
              }
          }
          //与user类似,调整serveBase实现环形FIFO
          uint32_t fc = this->frameCount;
          if (s >= fc) {
              // common case, server didn't just wrap
              if (s - fc >= serverBase ) {
                  serverBase += fc;
              }
          } else if (s >= serverBase + fc) {
              // server just wrapped
              serverBase += fc;
          }
      
          server = s;
      
          if (!(flags & CBLK_INVALID_MSK)) {
              cv.signal();
          }
          lock.unlock();
          return true;
      }
  • 相关阅读:
    DP 水题 最长不下降子序列
    数的划分
    水题------纪念品分组
    NY95 众数问题
    NY86 找球号(一)
    C3-Zexal的矩阵链乘
    C3-Zexal的多路流水线调度
    C4-Zexal的食物链
    C4-排列
    C3-炮弹杀伤力
  • 原文地址:https://www.cnblogs.com/code-4-fun/p/3267878.html
Copyright © 2011-2022 走看看