zoukankan      html  css  js  c++  java
  • hadoop文件的序列化

    目录

        1、为什么要序列化?

        2、什么是序列化?

        3、为什么不用Java的序列化?

        4、为什么序列化对Hadoop很重要?

        5、Hadoop中定义哪些序列化相关的接口呢?

        6、Hadoop 自定义Writable 接口

    1、为什么要序列化?

         一般来说,"活的"对象只存在内存里,关机断电就没有了。而且"活的"对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储"活的"对象,可以将"活的"对象发送到远程计算机。

    2、什么是序列化?

         序列化就是指将对象(实例)转化为字节流(字符数组)。反序列化就是将字节流转化为对象的逆过程。 于是,如果想把"活的"对象存储到文件,存储这串字节即可,如果想把"活的"对象发送到远程主机,发送这串字节即可,需要对象的时候,做一下反序列化,就能将对象"复活"了。

         将对象序列化存储到文件,术语又叫"持久化"。将对象序列化发送到远程计算机,术语又叫"数据通信"。

    3、为什么不用Java的序列化?

         Java的序列化机制的缺点就是计算量开销大,且序列化的结果体积大太,有时能达到对象大小的数倍乃至十倍。它的引用机制也会导致大文件不能分割的问题。这些缺点使得Java的序列化机制对Hadoop来说是不合适的。于是Hadoop设计了自己的序列化机制。

    4、为什么序列化对Hadoop很重要?

      因为Hadoop在集群之间进行通讯或者RPC调用的时候,需要序列化,而且要求序列化要快,且体积要小,占用带宽要小。所以必须理解Hadoop的序列化机制。

      序列化和反序列化在分布式数据处理领域经常出现:进程通信和永久存储。然而Hadoop中各个节点的通信是通过远程调用(RPC)实现的,那么 RPC序列化要求具有以下特点:
        紧凑:紧凑的格式能让我们能充分利用网络带宽,而带宽是数据中心最稀缺的资源
        快速:进程通信形成了分布式系统的骨架,所以需要尽量减少序列化和反序列化的性能开销,这是基本的
        可扩展:协议为了满足新的需求变化,所以控制客户端和服务器过程中,需要直接引进相应的协议,这些是新协议,原序列化方式能支持新的协议报文
        互操作:能支持不同语言写的客户端和服务端进行交互

    5、Hadoop中定义哪些序列化相关的接口呢?

      Hadoop中定义了两个序列化相关的接口:Writable 接口和 Comparable 接口,这两个接口可以合并成一个接口 WritableComparable

      下面我们就了解一下这两个序列化接口:

    • Writable接口

     所有实现了Writable接口的类都可以被序列化和反序列化。 Writable 接口中定义了两个方法,分别为write(DataOutput out)和readFields(DataInput in)。write 用于将对象状态写入二进制格式的DataOutput流,readFields 用于从二进制格式的 DataInput 流中读取对象状态。

     1 package org.apache.hadoop.io;
     2 
     3 import java.io.DataOutput;
     4 
     5 import java.io.DataInput;
     6 
     7 import java.io.IOException;
     8 
     9 import org.apache.hadoop.classification.InterfaceAudience;
    10 
    11 import org.apache.hadoop.classification.InterfaceStability;
    12 
    13 public interface Writable {
    14     /**
    15 
    16     * 将对象转换为字节流并写入到输出流out中
    17 
    18     */
    19 
    20     void write(DataOutput out) throws IOException;
    21     
    22     /**
    23     
    24     * 从输入流in中读取字节流反序列化为对象
    25     
    26     */
    27 
    28     void readFields(DataInput in) throws IOException;
    29 }

    对于一个特定的 Writable,我们可以对它进行哪些操作呢?

    有两种常用操作:赋值和取值,这里我们以 IntWritable 为例来分别说明(IntWritable是对Java的int类型的封装)

    1)通过 set() 函数设置 IntWritable 的值

      IntWritable value = new IntWritable();

      value.set(588)

      类似的,也可以使用构造函数来赋值。

      IntWritable value = new IntWritable(588);

    2)通过get()函数获取 IntWritable 的值。

     int result = value.get();// 这里获取的值为588

    • Comparable接口

      所有实现了Comparable的对象都可以和自身相同类型的对象比较大小。该接口定义为:

     1 package java.lang;
     2 
     3 import java.util.*;
     4 
     5 public interface Comparable<T> {
     6     /**
     7     * 将this对象和对象o进行比较,约定:返回负数为小于,零为大于,整数为大于
     8     */
     9     public int compareTo(T o);
    10 }

    6、Hadoop 自定义Writable 接口

      虽然 Hadoop 自带一系列Writable实现,如IntWritable,LongWritable等,可以满足一些简单的数据类型。但有时,复杂的数据类型需要自己自定义实现。通过自定义Writable,能够完全控制二进制表示和排序顺序。

      现有的 Hadoop Writable 应用已得到很好的优化,但为了对付更复杂的结构,最好创建一个新的 Writable 类型,而不是使用已有的类型。下面我们来学习一下如何自定义 Writable 类型,以自定义一个Writable 类型TextPair为例,如下所示

     1 import java.io.*;
     2 
     3 import org.apache.hadoop.io.*;
     4 
     5 /** 
     6 * @ProjectName Serialize
     7 * @ClassName TextPair
     8 * @Description 自定义Writable类型TextPair
     9 * @Author 刘吉超
    10 * @Date 2016-04-16 23:59:19
    11 */
    12 public class TextPair implements WritableComparable<TextPair> {
    13     // Text 类型的实例变量
    14     private Text first;
    15     // Text 类型的实例变量
    16     private Text second;
    17     
    18     public TextPair() {
    19         set(new Text(), new Text());
    20     }
    21 
    22     public TextPair(String first, String second) {
    23         set(new Text(first), new Text(second));
    24     }
    25 
    26     public TextPair(Text first, Text second) {
    27         set(first, second);
    28     }
    29 
    30     public void set(Text first, Text second) {
    31         this.first = first;
    32         this.second = second;
    33     }
    34 
    35     public Text getFirst() {
    36         return first;
    37     }
    38 
    39     public Text getSecond() {
    40         return second;
    41     }
    42     
    43     @Override
    44     // 将对象转换为字节流并写入到输出流out中
    45     public void write(DataOutput out) throws IOException {
    46         first.write(out);
    47         second.write(out);
    48     }
    49     
    50     @Override
    51     // 从输入流in中读取字节流反序列化为对象
    52     public void readFields(DataInput in) throws IOException {
    53         first.readFields(in);
    54         second.readFields(in);
    55     }
    56 
    57     @Override
    58     public int hashCode() {
    59         return first.hashCode() * 163 + second.hashCode();
    60     }
    61 
    62     @Override
    63     public boolean equals(Object o) {
    64         if (o instanceof TextPair) {
    65             TextPair tp = (TextPair) o;
    66             return first.equals(tp.first) && second.equals(tp.second);
    67         }
    68         return false;
    69     }
    70 
    71     @Override
    72     public String toString() {
    73         return first + "	" + second;
    74     }
    75 
    76     // 排序
    77     @Override
    78     public int compareTo(TextPair tp) {
    79         int cmp = first.compareTo(tp.first);
    80         if (cmp != 0) {
    81             return cmp;
    82         }
    83         return second.compareTo(tp.second);
    84     }
    85 }

      TextPair对象有两个Text实例变量(first和second)、相关的构造函数、get方法和set方法。 所有的Writable实现都必须有一个默认的构造函数,以便MapReduce框架能够对它们进行实例化,进而调用readFields()方法来填充它们的字段。Writable实例是易变的、经常重用的,所以应该尽量避免在 write() 或 readFields() 方法中分配对象。

      通过委托给每个 Text 对象本身,TextPair 的 write() 方法依次序列化输出流中的每一个 Text 对象。同样也通过委托给 Text 对象本身,readFields() 反序列化 输入流中的字节。DataOutput 和 DataInput 接口有丰富的整套方法用于序列化和反序列化 Java 基本类型,所以在一般情况下,能够完全控制 Writable 对象的数据传输格式。

      正如为Java写的任意值对象一样,会重写java.lang.Object的hashCode()、equals()和toString()方法。 HashPartitioner使用hashcode()方法来选择reduce分区,所以应该确保写一个好的哈希函数来确定reduce函数的分区在大小上是相当的。

      TextPair是WritableComparable的实现,所以它提供了compareTo()方法的实现,加入我们希望的排序:通过一个一个String逐个排序

    如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
    如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【关注我】。
    如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【刘超★ljc】。

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

  • 相关阅读:
    poj2181 jumping cow
    poj2184
    POJ 1189 钉子和小球
    uva11019矩阵匹配器D316
    noip2015运输计划
    [LintCode] Last Position of Target
    [LintCode] K Closest Points
    [LintCode] K Closest Numbers In Sorted Array
    [LintCode] Closest Number in Sorted Array
    [LintCode] Perfect Squares
  • 原文地址:https://www.cnblogs.com/codeOfLife/p/5400307.html
Copyright © 2011-2022 走看看