zoukankan      html  css  js  c++  java
  • 300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence.

    For example,
    Given [10, 9, 2, 5, 3, 7, 101, 18],
    The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

    Your algorithm should run in O(n2) complexity.

    Follow up: Could you improve it to O(n log n) time complexity?

     1 public class Solution {
     2     public int lengthOfLIS(int[] nums) {
     3         int[] dp = new int[nums.length];
     4         int res = 0;
     5         for(int i = 0;i<nums.length;i++){
     6             dp[i] = 1;
     7             for(int j=0;j<i;j++){
     8                 if(nums[i]>nums[j]){
     9                     dp[i] = Math.max(dp[j]+1,dp[i]);
    10                 }
    11             }
    12             res = Math.max(res,dp[i]);
    13         }
    14         return res;
    15     }
    16 }
    17 //the run time complexity could be O(n^2), the space complexity could be O(n);

    第二种方法比较不好理解,当我们遍历数组中的每一个元素的时候,我们可以将该元素在dp中进行排序,如果该元素大于dp中的最后一个元素,则长度+1,而如果该元素不比所有元素都打,则排序到所对应的位置,更新新元素,代码如下:

     1 public class Solution {
     2     public int lengthOfLIS(int[] nums) {
     3         int[] dp = new int[nums.length];
     4         int len = 0;
     5         for(int num:nums){
     6             int i=binarysearch(dp,0,len,num);
     7             if(i==len) len++;
     8         }
     9         return len;
    10     }
    11     public int binarysearch(int[] dp,int left,int right,int target){
    12         while(left<right){
    13             int mid = left+(right-left)/2;
    14             if(dp[mid]>=target) right = mid;
    15             else if(dp[mid]<target) left = mid+1;
    16         }
    17         dp[left] = target;
    18         return left;
    19     }
    20 }
    21 //the time complexity could be O(nlogn),the space complexity could be O(n)
  • 相关阅读:
    【转】 矩阵构造方法
    CODEVS1187 Xor最大路径 (Trie树)
    POJ2001 Shortest Prefixes (Trie树)
    CODEVS1079 回家 (最短路)
    CODEVS2144 砝码称重2 (哈希表)
    CODEVS1380 没有上司的舞会 (树形DP)
    JAVA 多态和异常处理作业——动手动脑以及课后实验性问题
    再读大道之简第七章第八章
    JAVA 接口与继承作业——动手动脑以及课后实验性问题
    再读大道至简第六章
  • 原文地址:https://www.cnblogs.com/codeskiller/p/6936102.html
Copyright © 2011-2022 走看看