zoukankan      html  css  js  c++  java
  • 300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence.

    For example,
    Given [10, 9, 2, 5, 3, 7, 101, 18],
    The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

    Your algorithm should run in O(n2) complexity.

    Follow up: Could you improve it to O(n log n) time complexity?

     1 public class Solution {
     2     public int lengthOfLIS(int[] nums) {
     3         int[] dp = new int[nums.length];
     4         int res = 0;
     5         for(int i = 0;i<nums.length;i++){
     6             dp[i] = 1;
     7             for(int j=0;j<i;j++){
     8                 if(nums[i]>nums[j]){
     9                     dp[i] = Math.max(dp[j]+1,dp[i]);
    10                 }
    11             }
    12             res = Math.max(res,dp[i]);
    13         }
    14         return res;
    15     }
    16 }
    17 //the run time complexity could be O(n^2), the space complexity could be O(n);

    第二种方法比较不好理解,当我们遍历数组中的每一个元素的时候,我们可以将该元素在dp中进行排序,如果该元素大于dp中的最后一个元素,则长度+1,而如果该元素不比所有元素都打,则排序到所对应的位置,更新新元素,代码如下:

     1 public class Solution {
     2     public int lengthOfLIS(int[] nums) {
     3         int[] dp = new int[nums.length];
     4         int len = 0;
     5         for(int num:nums){
     6             int i=binarysearch(dp,0,len,num);
     7             if(i==len) len++;
     8         }
     9         return len;
    10     }
    11     public int binarysearch(int[] dp,int left,int right,int target){
    12         while(left<right){
    13             int mid = left+(right-left)/2;
    14             if(dp[mid]>=target) right = mid;
    15             else if(dp[mid]<target) left = mid+1;
    16         }
    17         dp[left] = target;
    18         return left;
    19     }
    20 }
    21 //the time complexity could be O(nlogn),the space complexity could be O(n)
  • 相关阅读:
    前端工程精粹(一):静态资源版本更新与缓存
    METADATATYPE的使用,MVC的MODEL层数据验证
    Android开发之Intent.Action
    Android应用开发SharedPreferences存储数据的使用方法
    php开发环境搭建 win 7 + apache + mysql
    windows 2003 导出excel iis 配置记录
    fineui demo地址
    Fourth
    Third
    Second
  • 原文地址:https://www.cnblogs.com/codeskiller/p/6936102.html
Copyright © 2011-2022 走看看