zoukankan      html  css  js  c++  java
  • POJ 1459 EdmondKarp

    
    
    Power Network
    
    
    Time Limit: 2000MS   Memory Limit: 32768K
    Total Submissions: 23767   Accepted: 12421
    
    

    Description

    
    
    A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

    An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
    
    

    Input

    
    
    There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.
    
    

    Output

    
    
    For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
    
    

    Sample Input

    
    
    2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
    7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
             (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
             (0)5 (1)2 (3)2 (4)1 (5)4
    
    

    Sample Output

    
    
    15
    6
    
    

    Hint

    
    
    The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
    //by:yuan
    //2015.1.27
    1
    #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<queue> 6 #include<vector> 7 using namespace std; 8 const int inf=0x3fffffff; 9 const int maxn=107; 10 struct Edge 11 { 12 int from,to,cap,flow; 13 Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){} 14 }; 15 int n,np,nc,m; 16 vector<Edge> edges; 17 vector<int> G[maxn]; 18 int a[maxn]; 19 int p[maxn]; 20 21 void init() 22 { 23 for(int i=0;i<=n+1;i++) 24 G[i].clear(); 25 edges.clear(); 26 } 27 void AddEdge(int from,int to,int cap) 28 { 29 int mm; 30 edges.push_back(Edge(from,to,cap,0)); 31 edges.push_back(Edge(to,from,0,0)); 32 mm=edges.size(); 33 G[from].push_back(mm-2); 34 G[to].push_back(mm-1); 35 } 36 int Maxflow(int s,int t) 37 { 38 int flow=0; 39 for(;;){ 40 memset(a,0,sizeof(a)); 41 queue<int> Q; 42 Q.push(s); 43 a[s]=inf; 44 while(!Q.empty()){ 45 int x=Q.front();Q.pop(); 46 for(int i=0;i<G[x].size();i++) 47 { 48 Edge &e=edges[G[x][i]]; 49 if(!a[e.to]&&e.cap>e.flow){ 50 p[e.to]=G[x][i]; 51 a[e.to]=min(a[x],e.cap-e.flow); 52 Q.push(e.to); 53 } 54 } 55 if(a[t]) break; 56 } 57 if(!a[t]) break; 58 for(int u=t;u!=s;u=edges[p[u]].from){ 59 edges[p[u]].flow+=a[t]; 60 edges[p[u]^1].flow-=a[t]; 61 } 62 flow+=a[t]; 63 } 64 return flow; 65 } 66 int main() 67 { 68 int u,v,c; 69 while(~scanf("%d%d%d%d",&n,&np,&nc,&m)){ 70 init(); 71 for(int i=0;i<m;i++) 72 { 73 scanf(" (%d,%d)%d",&u,&v,&c); 74 AddEdge(u+1,v+1,c); 75 } 76 for(int i=0;i<np;i++) 77 { 78 scanf(" (%d)%d",&u,&c); 79 AddEdge(0,u+1,c); 80 } 81 for(int i=0;i<nc;i++) 82 { 83 scanf(" (%d)%d",&u,&c); 84 AddEdge(u+1,n+1,c); 85 } 86 int ans=Maxflow(0,n+1); 87 printf("%d ",ans); 88 } 89 return 0; 90 }
  • 相关阅读:
    I.MX6ULL LED C程序(转自左忠凯)
    I.MX6ULL的LED汇编程序
    Linux中的信号
    springboot的模板引擎之简介区分(一)
    springboot常用Starter介绍
    springboot拦截器之Filter和拦截器Interceptor之间的区别(六)
    springboot拦截器之多个自定义拦截器Interceptor的执行顺序(五)
    springboot拦截器之自定义拦截器Interceptor以及新旧配置的对比(四)
    springboot拦截器之自定义监听器listener(三)
    springboot拦截器之自定义原生servlet(二)
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4254623.html
Copyright © 2011-2022 走看看