zoukankan      html  css  js  c++  java
  • POJ 1458 最长公共子序列

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 40210   Accepted: 16188

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cstdlib>
    using namespace std;
    
    char str1[1001],str2[1001];
    int dp[2][1001];
    int l1,l2;
    
    int main()
    {
       // freopen("in.txt","r",stdin);
        while(~scanf("%s%s",str1,str2)){
            memset(dp,0,sizeof(dp));
            l1=strlen(str1);l2=strlen(str2);
            for(int i=0;i<l1;i++)
                for(int j=0;j<l2;j++)
            {
                if(str1[i]==str2[j])
                    dp[(i+1)&1][j+1]=max(dp[i&1][j]+1,max(dp[(i+1)&1][j],dp[i&1][j+1]));
                else dp[(i+1)&1][j+1]=max(dp[i&1][j+1],dp[(i+1)&1][j]);
            }
            printf("%d
    ",dp[l1&1][l2]);
        }
        return 0;
    }
  • 相关阅读:
    IOS-多线程技术
    设计模式-抽象工厂设计模式
    IOS-内存管理
    IOS-MVC的使用
    POJ2411 Mondriaan's Dream (广场铺砖问题 状压dp)
    NOIp2006T2 金明的预算方案
    POJ1179 Polygon(区间DP)
    NOIp2006T1能量项链
    美梦1(JSOI2014SC)
    TJOI2013(BZOJ3173)最长上升子序列
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4279941.html
Copyright © 2011-2022 走看看