zoukankan      html  css  js  c++  java
  • POJ 1463 树状dp

    Strategic game
    Time Limit: 2000MS   Memory Limit: 10000K
    Total Submissions: 6629   Accepted: 3058

    Description

    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    For example for the tree:

    the solution is one soldier ( at the node 1).

    Input

    The input contains several data sets in text format. Each data set represents a tree with the following description:

    • the number of nodes
    • the description of each node in the following format
      node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifiernumber_of_roads
      or
      node_identifier:(0)

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500);the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.

    Output

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:

    Sample Input

    4
    0:(1) 1
    1:(2) 2 3
    2:(0)
    3:(0)
    5
    3:(3) 1 4 2
    1:(1) 0
    2:(0)
    0:(0)
    4:(0)

    Sample Output

    1
    2

    Source


    POJ 1463:

    题目意思:

    在树的节点上放士兵,使得树的每一条边都有士兵看守,求所需要的最少士兵数;


    解题思路:

    树状dp,状态转移为:

    如果这个点放了士兵,则该点的dp等于所有儿子节点放士兵或者不放士兵的最小值之和;

    如果这个点不放士兵,则该点的dp等于所有儿子节点必须放士兵的和;

     

     

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cstdio>
     6 #include<vector>
     7 using namespace std;
     8 const int maxn=1507;
     9 const int inf=0x3f3f3ff;
    10 struct node
    11 {
    12     int to,next;
    13 };
    14 node tree[15007];
    15 vector<int> G[maxn];
    16 int dp[maxn][2];
    17 int n;
    18 void init()
    19 {
    20     for(int i=0;i<maxn;i++) G[i].clear();
    21     memset(tree,0,sizeof(tree));
    22     for(int i=0;i<maxn;i++)
    23     {
    24         dp[i][0]=dp[i][1]=inf;
    25     }
    26 }
    27 void dfs(int point)
    28 {
    29     int res1=0,res2=0;
    30     for(int i=0;i<G[point].size();i++)
    31     {
    32         dfs(G[point][i]);
    33         res1+=dp[G[point][i]][1];
    34         res2+=min(dp[G[point][i]][1],dp[G[point][i]][0]);
    35     }
    36     dp[point][0]=res1;
    37     dp[point][1]=min(dp[point][1],res2+1);
    38 }
    39 int main()
    40 {
    41    //freopen("in.txt","r",stdin);
    42     while(~scanf("%d",&n)){
    43         init();
    44         int a,b,c,root=-1;
    45         for(int i=1;i<=n;i++)
    46         {
    47             scanf("%d:(%d)",&a,&b);
    48             if(root==-1) root=a;
    49             for(int j=0;j<b;j++)
    50             {
    51                 scanf("%d",&c);
    52                 G[a].push_back(c);
    53              }
    54         }
    55         dfs(root);
    56         int ans=min(dp[root][1],dp[root][0]);
    57         printf("%d
    ",ans);
    58     }
    59     return 0;
    60 }

     

     

  • 相关阅读:
    分布式数据库中间件Mycat百亿级数据存储(转)
    大文本字符串滤重的解决方案(转)
    java处理大文本2G以上
    Mysql binlog详解
    varnish squid nginx比较
    java运行时内存分类
    redis rdb aof比较
    LeetCode 94 ——二叉树的中序遍历
    线性代数之——向量空间
    线性代数之——A 的 LU 分解
  • 原文地址:https://www.cnblogs.com/codeyuan/p/4312193.html
Copyright © 2011-2022 走看看