题解:
最主要的问题是如何判断一个数是否合法,这就需要发现性质了。
这个状态划分还是不太容易想到,
每次加的数(∈[0,k)),也就是个位一直在变变变,更高的位每次都是加一,这启发我们状态的划分。
这个时候可以利用数位dp的逐位确定思想,在尝试后,发现可以从高位到低位,因为当高位确定后,高位就不会变了,那么高位的最大值也就确定了。
设(f[i][p][a]),(i)含义如上,(i+1)位后的最大值是p,(2-i)位是0,当前个位是(a),使第(i)位加1后个位变成什么?
(i=2)时直接暴力处理,(f[i])可以(O(k))由(f[i-1])推出来,复杂度(O(n*k^3))。
有了f方便处理出(g[i][p][x][a]),(i、p、a)含义如上,x表示第i位要+x,
这里(x=0),g的值就是a,然后g自己推自己,复杂度(O(n*k^3))。
接下来的部分就很傻逼了,带根联通块,直接在dfs序上dp,做到个位的时候,再跳跳看能不能跳到那个位去就好了。
Code:
#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("
")
using namespace std;
const int N = 505;
int n, k;
int d[N], x, y;
vector<int> e[N];
#define pb push_back
#define si size()
int p[N], q[N], np[N], p0, fa[N];
void dg(int x) {
p[x] = ++ p0; np[p0] = x;
ff(j, 0, e[x].si) {
int y = e[x][j];
if(fa[x] != y) fa[y] = x, dg(y);
}
q[x] = p0;
}
const int mo = 1e9 + 7;
int f[N][10][10], g[N][10][10][10];
ll h[N][N][10][10];
void add(ll &x, ll y) {
(x += y) >= mo ? x -= mo : 0;
}
int T;
int main() {
// freopen("buried.in", "r", stdin);
// freopen("buried.out", "w", stdout);
k = 10;
for(scanf("%d", &T); T; T --) {
fo(i, 1, n) e[i].clear();
memset(h, 0, sizeof h);
fo(i, 1, n) fa[i] = 0; p0 = 0;
scanf("%d", &n);
fo(i, 1, n - 1) {
scanf("%d %d", &x, &y);
e[x].pb(y); e[y].pb(x);
}
fo(i, 1, n) scanf("%d", &d[i]);
fo(i, 1, n) sort(e[i].begin(), e[i].end());
dg(1);
//Initialization of F
ff(p, 0, k) {
ff(a, 0, k) if(p || a) {
int x = a;
while(x < k) {
x += max(x, p);
}
f[1][p][a] = x % k;
}
}
//dp F
fo(i, 2, n - 1) {
ff(p, 0, k) {
ff(a, 0, k) {
int x = a;
fo(c, 1, k) x = f[i - 1][max(p, c - 1)][x];
f[i][p][a] = x;
}
}
}
//dp g
fo(i, 2, n) {
ff(p, 0, k) {
ff(a, 0, k) {
g[i][p][0][a] = a;
ff(x, 1, k) g[i][p][x][a] = f[i - 1][max(x - 1, p)][g[i][p][x - 1][a]];
}
}
}
//dp h
ll ans = 0;
fo(j, 1, n) h[1][j][0][1] = 1;
fo(i, 1, n) {
int num = d[np[i]];
int ni = q[np[i]] + 1;
fo(j, 2, n) {
ff(p, 0, k) ff(a, 0, k) if(h[i][j][p][a] && (p || a)) {
add(h[i + 1][j - 1][max(p, num)][g[j][p][num][a]], h[i][j][p][a]);
add(h[ni][j][p][a], h[i][j][p][a]);
}
}
ff(p, 0, k) ff(a, 0, k) if(h[i][1][p][a] && (p || a)) {
int x = a;
while(x < num) x += max(x, p);
if(x == num) add(ans, h[i][1][p][a]);
add(h[ni][1][p][a], h[i][1][p][a]);
}
}
pp("%lld
", ans);
}
}