zoukankan      html  css  js  c++  java
  • 【KDD2020论文阅读总结】滴滴到达时间预测的快速推理系统

    【Title】CompactETA: A Fast Inference System for Travel Time Prediction
    【应用】估计到达时间 (estimated time of arrival (ETA)),误差在100ms
    【文章要点】
    1. 在该方法中,我们将图注意网络应用于一个时空加权的道路网络图,将高阶的时空依赖性编码到复杂的表示中。为了避免网络结构的周期性,我们进一步对出行路径的顺序信息进行了位置编码。
    2. 为了保证实时性,推理网络用的是简单的MLP
    3. 同时,设计了一个异步的特征表征学习网络,该模型使用非实时的raw features来学习空间表征。使用graph attention network来学习路网解耦的空间关联。此外,使用positional encoding(一个在transformer中用于替代recurrent model的方式)来对路径信息进行空间编码,同时前鳄鱼时间的依赖关系
    4. ETA问题定义:d→司机,t→开始时间,p→路径的基于时间的切片
    5. 在路网中,使用link来表示实际路段,定义link的特征向量xl,l为id。所有link的特征,形成一个矩阵
    6. 对于每一个qi,相当于从L中挑选出一个子集
    7. 此外,还有一个全局的特征向量gi,表示路径的影响因素,例如天气、司机ID,周几等
    8. 对比的baseline model: WDR (wide-deep-recurrent) model. wide层使用叉乘记忆g特征向量。deep层是两个全连接层用于增强泛化能力。recurrent层是一个LSTM

     embedding size=20
    9. compactETA:

     包含两部分,实时的推理模型(3层MLP),离线的高阶特征表征模型。
    10. Graph attention network: 路段间的关系编码,使用onehot  (由于没有图网络的基础,所以此处等后续再细看)
    11. Positional encoding


  • 相关阅读:
    Eclipse的安装
    为Eclipse绑定Tomcat
    CHIL-SQL-快速参考
    CHIL-SQL-FORMAT() 函数
    CHIL-SQL-NOW() 函数
    CHIL-SQL-ROUND() 函数
    CHIL-SQL-LEN() 函数
    CHIL-SQL-MID() 函数
    【PAT A1060】Are They Equal
    vector
  • 原文地址:https://www.cnblogs.com/combfish/p/13589661.html
Copyright © 2011-2022 走看看