zoukankan      html  css  js  c++  java
  • (转)关于T(n) = kT(n/c) + f(n) 的时间复杂度

    转自:http://www.cnblogs.com/wu8685/archive/2010/12/21/1912347.html

    求递归算法时间复杂度:递归树

      递归算法时间复杂度的计算方程式一个递归方程:

      

      在引入递归树之前可以考虑一个例子:

      T(n) = 2T(n/2) + n2

      迭代2次可以得:

      T(n) = n2 + 2(2T(n/4) + (n/2) 2)

      还可以继续迭代,将其完全展开可得:

      T(n) = n2 + 2((n/2) 2 + 2((n/22)2 + 2((n/23) 2 + 2((n/24) 2 +…+2((n/2i) 2 + 2T(n/2i + 1)))…))))  ……(1)

      而当n/2i+1 == 1时,迭代结束。

      将(1)式小括号展开,可得:

      T(n) = n2 + 2(n/2)2 + 22(n/22) 2 + … + 2i(n/2i)2 + 2i+1T(n/2i+1)

      这恰好是一个树形结构,由此可引出递归树法。

     

      图中的(a)(b)(c)(d)分别是递归树生成的第1,2,3,n步。每一节点中都将当前的自由项n2留在其中,而将两个递归项T(n/2) + T(n/2)分别摊给了他的两个子节点,如此循环。

      图中所有节点之和为:

      [1 + 1/2 + (1/2)2 + (1/2)3 + … + (1/2)i] n2 = 2n2

      可知其时间复杂度为O(n2)

      

      可以得到递归树的规则为:

      (1) 每层的节点为T(n) = kT(n / m) + f(n)中的f(n)在当前的n/m下的值;

      (2) 每个节点的分支数为k;

      (3)每层的右侧标出当前层中所有节点的和。

      再举个例子:

      T(n) = T(n/3) + T(2n/3) + n

      其递归树如下图所示:

      

      可见每层的值都为n,从根到叶节点的最长路径是:

      

      因为最后递归的停止是在(2/3)kn == 1.则

          

      于是

        

      即T(n) = O(nlogn) 

      总结,利用此方法解递归算法复杂度:

      f(n) = af(n/b) + d(n)

      1.当d(n)为常数时:

      

      2.当d(n) = cn 时:

       

      3.当d(n)为其他情况时可用递归树进行分析。

      

      由第二种情况知,若采用分治法对原算法进行改进,则着重点是采用新的计算方法缩小a值。  

  • 相关阅读:
    Android DisplayMetrics 获取和屏幕相关的信息
    【IOS开发—视图控制器】
    【IOS开发—视图】
    【Spdy协议简介】
    三维数组
    一维数组
    闰年判断
    使用switch case语句来显示月份的对应天数
    使用for循环嵌套实现乘法口诀表
    判断一个数的奇偶性
  • 原文地址:https://www.cnblogs.com/cquljw/p/3807191.html
Copyright © 2011-2022 走看看