zoukankan      html  css  js  c++  java
  • B. Balanced Lineup

    B. Balanced Lineup

    5000ms
    5000ms
    65536KB
     
    64-bit integer IO format: %lld      Java class name: Main
     

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

     

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
     

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
     

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2
     

    Sample Output

    6
    3
    0

    解题:RMQ

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cstdlib>
     5 #include <vector>
     6 #include <climits>
     7 #include <algorithm>
     8 #include <cmath>
     9 #define LL long long
    10 using namespace std;
    11 int mn[50010][32],mx[50010][32],d[50010];
    12 int main(){
    13     int n,m,x,y,i,j;
    14     while(~scanf("%d %d",&n,&m)){
    15         for(i = 0; i < n; i++){
    16             scanf("%d",d+i);
    17         }
    18         memset(mn,0,sizeof(mn));
    19         memset(mx,0,sizeof(mx));
    20         for(i = n-1; i >= 0; i--){
    21             mn[i][0] = mx[i][0] = d[i];
    22             for(j = 1; i+(1<<j)-1 < n; j++){
    23                 mn[i][j] = min(mn[i][j-1],mn[i+(1<<(j-1))][j-1]);
    24                 mx[i][j] = max(mx[i][j-1],mx[i+(1<<(j-1))][j-1]);
    25             }
    26         }
    27         for(i = 0; i < m; i++){
    28             scanf("%d %d",&x,&y);
    29             if(x > y) swap(x,y);
    30             int r = y - x + 1;
    31             r = log2(r);
    32             int theMax,theMin;
    33             theMax = max(mx[x-1][r],mx[y-(1<<r)][r]);
    34             theMin = min(mn[x-1][r],mn[y-(1<<r)][r]);
    35             printf("%d
    ",theMax-theMin);
    36         }
    37     }
    38     return 0;
    39 }
    View Code
  • 相关阅读:
    课堂例子验证
    大道至简第三章读后感
    动手动脑例子验证
    各数相加的思路、流程图、源代码及实现截图
    大道至简第二章读后感
    《大道至简》第一章读后感
    个人冲刺08
    个人冲刺07
    构建之法读后感04
    个人冲刺06
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3841068.html
Copyright © 2011-2022 走看看