zoukankan      html  css  js  c++  java
  • POJ 3680 Intervals

    Intervals

    Time Limit: 5000ms
    Memory Limit: 65536KB
    This problem will be judged on PKU. Original ID: 3680
    64-bit integer IO format: %lld      Java class name: Main
     

    You are given N weighted open intervals. The ith interval covers (aibi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.

     

    Input

    The first line of input is the number of test case.The first line of each test case contains two integers, N and K (1 ≤ K ≤ N ≤ 200).The next N line each contain three integers aibiwi(1 ≤ ai < bi ≤ 100,000, 1 ≤ wi ≤ 100,000) describing the intervals. There is a blank line before each test case.

     

    Output

    For each test case output the maximum total weights in a separate line.

     

    Sample Input

    4
    
    3 1
    1 2 2
    2 3 4
    3 4 8
    
    3 1
    1 3 2
    2 3 4
    3 4 8
    
    3 1
    1 100000 100000
    1 2 3
    100 200 300
    
    3 2
    1 100000 100000
    1 150 301
    100 200 300
    

    Sample Output

    14
    12
    100000
    100301
    

    Source

     
    解题:离散化+费用流
     
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <cmath>
      5 #include <algorithm>
      6 #include <climits>
      7 #include <vector>
      8 #include <queue>
      9 #include <cstdlib>
     10 #include <string>
     11 #include <set>
     12 #include <stack>
     13 #define LL long long
     14 #define INF 0x3f3f3f3f
     15 using namespace std;
     16 const int maxn = 1000;
     17 struct arc{
     18     int v,w,f,next;
     19     arc(int x = 0,int y = 0,int z = 0,int nxt = 0){
     20         v = x;
     21         w = y;
     22         f = z;
     23         next = nxt;
     24     }
     25 };
     26 arc e[10000];
     27 int head[maxn],d[maxn],p[maxn],tot;
     28 int n,k,S,T,lisan[maxn],cnt,x[maxn],y[maxn],sc[maxn];
     29 bool in[maxn];
     30 queue<int>q;
     31 void add(int u,int v,int w,int f){
     32     e[tot] = arc(v,w,f,head[u]);
     33     head[u] = tot++;
     34     e[tot] = arc(u,-w,0,head[v]);
     35     head[v] = tot++;
     36 }
     37 bool spfa(){
     38     for(int i = 0; i <= T; i++){
     39         d[i] = INF;
     40         in[i] = false;
     41         p[i] = -1;
     42     }
     43     while(!q.empty()) q.pop();
     44     d[S] = 0;
     45     in[S] = true;
     46     q.push(S);
     47     while(!q.empty()){
     48         int u = q.front();
     49         q.pop();
     50         in[u] = false;
     51         for(int i = head[u]; ~i; i = e[i].next){
     52             if(e[i].f > 0 && d[e[i].v] > d[u] + e[i].w){
     53                 d[e[i].v] = d[u] + e[i].w;
     54                 //cout<<"end:"<<e[i].v<<endl;
     55                 p[e[i].v] = i;
     56                 if(!in[e[i].v]){
     57                     in[e[i].v] = true;
     58                     q.push(e[i].v);
     59                 }
     60             }
     61         }
     62     }
     63     return p[T] > -1;
     64 }
     65 int solve(){
     66     int tmp = 0,minV;
     67     while(spfa()){
     68         minV = INF;
     69         for(int i = p[T]; ~i; i = p[e[i^1].v])
     70             minV = min(minV,e[i].f);
     71         for(int i = p[T]; ~i; i = p[e[i^1].v]){
     72             tmp += minV*e[i].w;
     73             e[i].f -= minV;
     74             e[i^1].f += minV;
     75         }
     76         //cout<<"tmp:"<<tmp<<endl;
     77     }
     78     return tmp;
     79 }
     80 int main(){
     81     int t;
     82     scanf("%d",&t);
     83     while(t--){
     84         scanf("%d %d",&n,&k);
     85         memset(head,-1,sizeof(head));
     86         cnt = tot = 0;
     87         //cout<<"n:"<<n<<endl;
     88         for(int i = 0; i < n; i++){
     89             scanf("%d %d %d",x+i,y+i,sc+i);
     90             lisan[cnt++] = x[i];
     91             lisan[cnt++] = y[i];
     92         }
     93         sort(lisan,lisan+cnt);
     94         int cnt1 = 1;
     95         for(int i = 1; i < cnt; i++)
     96             if(lisan[cnt1-1] != lisan[i]) lisan[cnt1++] = lisan[i];
     97         cnt = cnt1;
     98         S = 0;
     99         T = cnt;
    100         //cout<<"n:"<<n<<endl;
    101         for(int i = 0; i < n; i++){
    102             int tx = lower_bound(lisan,lisan+cnt,x[i])-lisan;
    103             int ty = lower_bound(lisan,lisan+cnt,y[i])-lisan;
    104             //cout<<tx<<" "<<ty<<" ---"<<endl;
    105             add(tx,ty,-sc[i],1);
    106             add(tx,ty,0,k);
    107         }
    108         for(int i = 0; i < cnt; i++) add(i,i+1,0,k);
    109         printf("%d
    ",-solve());
    110     }
    111     return 0;
    112 }
    View Code
  • 相关阅读:
    ansible自动化运维04
    ansible自动化运维03
    ansible自动化运维02
    ansible自动化运维01
    mysql innodb存储引擎和一些参数优化
    Mysql 数据库常用配置命令
    zabbix server3.4 使用mailx配置邮件报警
    32_redis cluster的核心原理分析:gossip通信、jedis smart定位、主备切换
    31_redis cluster的自动化slave迁移实现更强的高可用架构的部署方案
    30_redis cluster通过master水平扩容来支撑更高的读写吞吐+海量数据
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3975398.html
Copyright © 2011-2022 走看看