The Bottom of a Graph
Time Limit: 3000ms
Memory Limit: 65536KB
This problem will be judged on PKU. Original ID: 255364-bit integer IO format: %lld Java class name: Main
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, epairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
![](http://www.bnuoj.com/v3/images/2553_1.jpg)
Sample Input
3 3 1 3 2 3 3 1 2 1 1 2 0
Sample Output
1 3 2
Source
解题:求这样的点,它能到的点,那点也可以到它,注意先后顺序。然后求强联通缩点,出度为0的集合,里面的点即为我们求得那些点
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <climits> 7 #include <vector> 8 #include <queue> 9 #include <cstdlib> 10 #include <string> 11 #include <set> 12 #include <stack> 13 #define LL long long 14 #define pii pair<int,int> 15 #define INF 0x3f3f3f3f 16 using namespace std; 17 const int maxn = 6000; 18 struct arc { 19 int to,next; 20 arc(int x = 0,int y = -1) { 21 to = x; 22 next = y; 23 } 24 }; 25 arc e[maxn*100]; 26 int head[maxn],dfn[maxn],low[maxn],belong[maxn],my[maxn]; 27 int tot,n,m,top,scc,idx,out[maxn],ans[maxn]; 28 bool instack[maxn]; 29 void init() { 30 for(int i = 0; i < maxn; ++i) { 31 dfn[i] = low[i] = belong[i] = 0; 32 instack[i] = false; 33 head[i] = -1; 34 out[i] = 0; 35 } 36 scc = tot = idx = top = 0; 37 } 38 void add(int u,int v){ 39 e[tot] = arc(v,head[u]); 40 head[u] = tot++; 41 } 42 void tarjan(int u) { 43 dfn[u] = low[u] = ++idx; 44 my[top++] = u; 45 instack[u] = true; 46 for(int i = head[u]; ~i; i = e[i].next) { 47 if(!dfn[e[i].to]) { 48 tarjan(e[i].to); 49 low[u] = min(low[u],low[e[i].to]); 50 } else if(instack[e[i].to]) low[u] = min(low[u],dfn[e[i].to]); 51 } 52 if(dfn[u] == low[u]) { 53 scc++; 54 int v; 55 do { 56 v = my[--top]; 57 instack[v] = false; 58 belong[v] = scc; 59 } while(v != u); 60 } 61 } 62 int main() { 63 int u,v; 64 while(~scanf("%d",&n)&&n) { 65 scanf("%d",&m); 66 init(); 67 for(int i = 0; i < m; ++i) { 68 scanf("%d%d",&u,&v); 69 add(u,v); 70 } 71 for(int i = 1; i <= n; ++i) 72 if(!dfn[i]) tarjan(i); 73 for(int i = 1; i <= n; ++i) 74 for(int j = head[i]; ~j; j = e[j].next) 75 if(belong[i] != belong[e[j].to]) out[belong[i]]++; 76 int cnt = 0; 77 for(int i = 1; i <= n; ++i) 78 if(!out[belong[i]]) ans[cnt++] = i; 79 if(cnt){ 80 for(int i = 0; i < cnt; ++i) 81 printf("%d%c",ans[i],i + 1 == cnt?' ':' '); 82 }else puts(""); 83 } 84 return 0; 85 }