zoukankan      html  css  js  c++  java
  • UESTC 360 Another LCIS

    Another LCIS

    Time Limit: 1000ms
    Memory Limit: 65536KB
    This problem will be judged on UESTC. Original ID: 1425
    64-bit integer IO format: %lld      Java class name: Main

    For a sequence S1,S2,...,SN, and a pair of integers (i, j), if 1 <= i <= j <= N and Si < Si+1 < Si+2 <...< Sj-1 < Sj, then the sequence Si,Si+1,...,Sj is a CIS (Continuous Increasing Subsequence). The longest CIS of a sequence is called the LCIS (Longest Continuous Increasing Subsequence).

    In this problem, we will give you a sequence first, and then some “add” operations and some “query” operations. An add operation adds a value to each member in a specified interval. For a query operation, you should output the length of the LCIS of a specified interval.

     

    Input

    The first line of the input is an integer T, which stands for the number of test cases you need to solve.

    Every test case begins with two integers N, Q, where N is the size of the sequence, and Q is the number of queries. S1,S2,...,SN are specified on the next line, and then Q queries follow. Every query begins with a character ‘a’ or ‘q’. ‘a’ is followed by three integers L, R, V, meaning that add V to members in the interval [L, R] (including L, R), and ‘q’ is followed by two integers L, R, meaning that you should output the length of the LCIS of interval [L, R].

    T <= 10;

    1 <= N, Q <= 100000;

    1 <= L <= R <= N;

    -10000 <= S1,S2,...,SN, V <= 10000.

     

    Output

    For every test case, you should output "Case #k:" on a single line first, where k indicates the case number and starts at 1. Then for every ‘q’ query, output the answer on a single line. See sample for more details.

     

    Sample Input

    1
    5 6
    0 1 2 3 4 
    q 1 4
    a 1 2 -10
    a 1 1 -6
    a 5 5 -4
    q 2 3
    q 4 4

    Sample Output

    Case #1:
    4
    2
    1

    Source

     
    解题:线段树往死里搞
     
      1 #include <bits/stdc++.h>
      2 using namespace std;
      3 const int maxn = 100010;
      4 struct node {
      5     int ret,lv,rv,lsum,rsum,lazy;
      6 } tree[maxn<<2];
      7 void pushup(int v,int k) {
      8     tree[v].lsum = tree[v<<1].lsum;
      9     tree[v].rsum = tree[v<<1|1].rsum;
     10     tree[v].lv = tree[v<<1].lv;
     11     tree[v].rv = tree[v<<1|1].rv;
     12     if(tree[v].lsum == k - (k>>1) && tree[v<<1].rv < tree[v<<1|1].lv)
     13         tree[v].lsum += tree[v<<1|1].lsum;
     14     if(tree[v].rsum == (k>>1) && tree[v<<1].rv < tree[v<<1|1].lv)
     15         tree[v].rsum += tree[v<<1].rsum;
     16     tree[v].ret = max(tree[v<<1].ret,tree[v<<1|1].ret);
     17     if(tree[v<<1].rv < tree[v<<1|1].lv)
     18         tree[v].ret = max(tree[v].ret,tree[v<<1].rsum + tree[v<<1|1].lsum);
     19 }
     20 void pushdown(int v,int k) {
     21     if(tree[v].lazy) {
     22         tree[v<<1].lazy += tree[v].lazy;
     23         tree[v<<1|1].lazy += tree[v].lazy;
     24         tree[v<<1].lv += tree[v].lazy;
     25         tree[v<<1].rv += tree[v].lazy;
     26         tree[v<<1|1].lv += tree[v].lazy;
     27         tree[v<<1|1].rv += tree[v].lazy;
     28         tree[v].lazy = 0;
     29     }
     30 }
     31 void build(int L,int R,int v) {
     32     tree[v].lazy = 0;
     33     if(L == R) {
     34         tree[v].lsum = tree[v].rsum = 1;
     35         scanf("%d",&tree[v].rv);
     36         tree[v].lv = tree[v].rv;
     37         tree[v].ret = 1;
     38         return;
     39     }
     40     int mid = (L + R)>>1;
     41     build(L,mid,v<<1);
     42     build(mid+1,R,v<<1|1);
     43     pushup(v,R - L + 1);
     44 }
     45 void update(int L,int R,int lt,int rt,int val,int v) {
     46     if(lt <= L && rt >= R) {
     47         tree[v].lazy += val;
     48         tree[v].lv += val;
     49         tree[v].rv += val;
     50         return;
     51     }
     52     pushdown(v,R - L + 1);
     53     int mid = (L + R)>>1;
     54     if(lt <= mid) update(L,mid,lt,rt,val,v<<1);
     55     if(rt > mid) update(mid+1,R,lt,rt,val,v<<1|1);
     56     pushup(v,R - L + 1);
     57 }
     58 int query(int L,int R,int lt,int rt,int v) {
     59     if(lt <= L && rt >= R) return tree[v].ret;
     60     pushdown(v,R - L + 1);
     61     int ret  = 0,mid = (L + R)>>1;
     62     if(lt <= mid) ret = max(ret,query(L,mid,lt,rt,v<<1));
     63     if(rt > mid) ret = max(ret,query(mid+1,R,lt,rt,v<<1|1));
     64     if(lt <= mid && rt > mid && tree[v<<1].rv < tree[v<<1|1].lv)
     65         ret = max(ret,min(mid - lt + 1,tree[v<<1].rsum) + min(rt - mid,tree[v<<1|1].lsum));
     66     pushup(v,R - L + 1);
     67     return ret;
     68 }
     69 int main() {
     70     int T,n,m,x,y,val,cs = 1;
     71     char op[3];
     72     scanf("%d",&T);
     73     while(T--) {
     74         scanf("%d %d",&n,&m);
     75         printf("Case #%d:
    ",cs++);
     76         build(1,n,1);
     77         while(m--) {
     78             scanf("%s%d%d",op,&x,&y);
     79             if(op[0] == 'a') {
     80                 scanf("%d",&val);
     81                 update(1,n,x,y,val,1);
     82             } else if(op[0] == 'q')
     83                 printf("%d
    ",query(1,n,x,y,1));
     84         }
     85     }
     86     return 0;
     87 }
     88 /*
     89 1
     90 5 6
     91 0 1 2 3 4
     92 q 1 4
     93 a 1 2 -10
     94 a 1 1 -6
     95 a 5 5 -4
     96 q 2 3
     97 q 4 4
     98 
     99 Case #1:
    100 4
    101 2
    102 1
    103 */
    View Code
  • 相关阅读:
    sql 存储过程参数为空则不作为条件
    sql 将某一列转成字符串并且去掉最后一个逗号
    日期时间格式加减操作
    未能加载文件或程序集“NPOI”或它的某一个依赖项
    SqlBulkCopy 批量插入
    字符串操作
    CSS基本知识汇总
    ORACLE创建表之前判断表是否存在与SQL Server 对比使用
    SELECT INTO FROM 与 INSERT INTO SELECT区别鉴赏
    SQL 养成一个好习惯是一笔财富
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4466542.html
Copyright © 2011-2022 走看看