zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 1 Assignment

    Assignment

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 297    Accepted Submission(s): 152


    Problem Description
    Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this company, and every staff has a ability. Now, Tom is going to assign a special task to some staffs who were in the same group. In a group, the difference of the ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
     
    Input
    In the first line a number T indicates the number of test cases. Then for each case the first line contain 2 numbers n, k (1<=n<=100000, 0<k<=10^9),indicate the company has n persons, k means the maximum difference between abilities of staff in a group is less than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
     
    Output
    For each test,output the number of groups.
     
    Sample Input
    2
    4 2
    3 1 2 4
    10 5
    0 3 4 5 2 1 6 7 8 9
     
    Sample Output
    5
    28
     
    Hint
    First Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]
     
    Source
     
    解题:线段树+尺取法 或者 单调队列 然而我不会单调队列 也可以用st表
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int maxn = 100010;
     5 struct node {
     6     int lt,rt,minv,maxv;
     7 } tree[maxn<<2];
     8 int d[maxn];
     9 inline void pushup(int v) {
    10     tree[v].minv = min(tree[v<<1].minv,tree[v<<1|1].minv);
    11     tree[v].maxv = max(tree[v<<1].maxv,tree[v<<1|1].maxv);
    12 }
    13 void build(int lt,int rt,int v) {
    14     tree[v].lt = lt;
    15     tree[v].rt = rt;
    16     if(lt == rt) {
    17         tree[v].minv = tree[v].maxv = d[lt];
    18         return;
    19     }
    20     int mid = (lt + rt)>>1;
    21     build(lt,mid,v<<1);
    22     build(mid+1,rt,v<<1|1);
    23     pushup(v);
    24 }
    25 int query(int lt,int rt,int v,bool qmax) {
    26     if(lt <= tree[v].lt && rt >= tree[v].rt)
    27         return qmax?tree[v].maxv:tree[v].minv;
    28     int ret = qmax?INT_MIN:INT_MAX;
    29     if(lt <= tree[v<<1].rt)
    30         ret = qmax?max(ret,query(lt,rt,v<<1,qmax)):min(ret,query(lt,rt,v<<1,qmax));
    31     if(rt >= tree[v<<1|1].lt)
    32         ret = qmax? max(ret,query(lt,rt,v<<1|1,qmax)):min(ret,query(lt,rt,v<<1|1,qmax));
    33     return ret;
    34 }
    35 int main() {
    36     int n,m,kase;
    37     scanf("%d",&kase);
    38     while(kase--) {
    39         scanf("%d%d",&n,&m);
    40         for(int i = 0; i < n; ++i)
    41             scanf("%d",d+i);
    42         build(0,n-1,1);
    43         int low = 0,high = 0;
    44         LL ret = 0;
    45         while(low <= high && high < n) {
    46             int minv = query(low,high,1,false);
    47             int maxv = query(low,high,1,true);
    48             if(maxv - minv < m) ret += high-low+1;
    49             if(maxv - minv >= m) low++;
    50             else high++;
    51         }
    52         cout<<ret<<endl;
    53     }
    54     return 0;
    55 }
    View Code
  • 相关阅读:
    React技术栈-React路由插件之react-router的各组件传递数据及路由跳转方式
    React技术栈-React路由插件之react-router的嵌套路由
    React技术栈-React路由插件之自定义组件标签
    React技术栈-React路由插件之react-router的基本使用
    React技术栈-组件间通信的2种方式
    Linux文本处理三剑客之sed详解
    HAProxy的高级配置选项-配置haproxy支持https协议及服务器动态上下线
    HAProxy的高级配置选项-haproxy的四层负载及访问控制案例
    HAProxy的高级配置选项-haproxy预定义(内置)acl使用案例
    HAProxy的高级配置选项-ACL篇之基于策略的访问控制
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4665626.html
Copyright © 2011-2022 走看看