zoukankan      html  css  js  c++  java
  • UVA 11478 Halum

    Halum

    Time Limit: 3000ms
    Memory Limit: 131072KB
    This problem will be judged on UVA. Original ID: 11478
    64-bit integer IO format: %lld      Java class name: Main

    You are given a directed graph G(V,E) with a set of vertices and edges. Each edge (i,j) that connects some vertex i to vertex j has an integer cost associated with that edge.

    Define the operation Halum(v, d) to operate on a vertex v using an integer d as follows: subtract d from the cost of all edges that enter v and add d to the cost of every edge that leaves v.

    As an example of that operation, consider graph G that has three vertices named (1, 2, 3) and two edges. Edge (1, 2) has cost -1, and edge (2,3) has cost 1. The operation Halum(2,-3) operates on edges entering and leaving vertex 2. Thus, edge (1, 2) gets cost -1-(-3)=2 and the edge (2, 3) gets cost 1 + (-3) = -2.

    Your goal is to apply the Halum function to a graph, potentially repeatedly, until every edge in the graph has at least a certain cost that is greater than zero. You have to maximize this cost.

    Input

    Two space-separated integers per case: V(V≤500) and E(E≤2700). E lines follow. Each line represents a directed edge using three space-separated integers (u, v, d). Absolute value of cost can be at most 10000.

    Output

    If the problem is solvable, then print the maximum possible value. If there is no such solution print “No Solution”. If the value can be arbitrary large print “Infinite”

    Sample Input

    2 1
    1 2 10
    2 1
    1 2 -10
    3 3
    1 2 4
    2 3 2
    3 1 5
    4 5
    2 3 4
    4 2 5
    3 4 2
    3 1 0
    1 2 -1

    Sample Output

    Infinite
    Infinite
    3
    1

    解题:差分约束

     1 #include <cstdio>
     2 #include <deque>
     3 #include <cstring>
     4 #include <iostream>
     5 using namespace std;
     6 const int maxn = 510;
     7 struct arc {
     8     int to,w,next;
     9     arc(int x = 0,int y = 0,int z = -1) {
    10         to = x;
    11         w = y;
    12         next = z;
    13     }
    14 } e[500000];
    15 int head[maxn],tot,n,m;
    16 void add(int u,int v,int w) {
    17     e[tot] = arc(v,w,head[u]);
    18     head[u] = tot++;
    19 }
    20 int d[maxn],cnt[maxn];
    21 bool in[maxn];
    22 bool spfa(int x) {
    23     deque<int>q;
    24     for(int i = 1; i <= n; ++i) {
    25         cnt[i] = 1;
    26         d[i] = 0;
    27         in[i] = true;
    28         q.push_back(i);
    29     }
    30     while(!q.empty()) {
    31         int  u = q.front();
    32         q.pop_front();
    33         in[u] = false;
    34         for(int i = head[u]; ~i; i = e[i].next) {
    35             int tmp = e[i].w - x;
    36             if(d[e[i].to] > d[u] + tmp) {
    37                 d[e[i].to] = d[u] + tmp;
    38                 if(!in[e[i].to]) {
    39                     if(++cnt[e[i].to] > n) return false;
    40                     in[e[i].to] = true;
    41                     if(!q.empty() && d[q.front()] > d[e[i].to])
    42                         q.push_front(e[i].to);
    43                     else q.push_back(e[i].to);
    44                 }
    45             }
    46         }
    47     }
    48     return true;
    49 }
    50 int main() {
    51     int u,v,w;
    52     while(~scanf("%d%d",&n,&m)) {
    53         memset(head,-1,sizeof head);
    54         int low = 1,high = 0;
    55         for(int i = tot = 0; i < m; ++i) {
    56             scanf("%d%d%d",&u,&v,&w);
    57             add(u,v,w);
    58             high = max(high,w);
    59         }
    60         if(!spfa(1)) puts("No Solution");
    61         else if(spfa(high+1)) puts("Infinite");
    62         else {
    63             int ret;
    64             while(low <= high) {
    65                 int mid = (low + high)>>1;
    66                 if(spfa(mid)) {
    67                     ret = mid;
    68                     low = mid+1;
    69                 } else high = mid - 1;
    70             }
    71             printf("%d
    ",ret);
    72         }
    73     }
    74     return 0;
    75 }
    View Code
  • 相关阅读:
    上帝永远不会问你的十件事
    discuz x1.5 showmessage函数和showDialog函数解析
    人生,没有那么简单…
    Proxy代理对象是如何调用invoke()方法的.
    实现简单的AOP前置后置增强
    浅谈设计模式visitor访问者模式
    了解jsp,这一篇就够了.
    jsp之el表达式jstl标签
    orale数据库.实例.表空间.用户.表
    题解 UVa10892
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4703338.html
Copyright © 2011-2022 走看看