zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 7 hdu 5373 The shortest problem

    The shortest problem

    Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 346    Accepted Submission(s): 167


    Problem Description
    In this problem, we should solve an interesting game. At first, we have an integer n, then we begin to make some funny change. We sum up every digit of the n, then insert it to the tail of the number n, then let the new number be the interesting number n. repeat it for t times. When n=123 and t=3 then we can get 123->1236->123612->12361215.
     
    Input
    Multiple input.
    We have two integer n (0<=n<=104 ) , t(0<=t<=105) in each row.
    When n==-1 and t==-1 mean the end of input.
     
    Output
    For each input , if the final number are divisible by 11, output “Yes”, else output ”No”. without quote.
     
    Sample Input
    35 2
    35 1
    -1 -1
     
    Sample Output
    Case #1: Yes
    Case #2: No
     
    Source
     
    解题:由于能被11整除的数的特点是奇数位与偶数位的和的绝对值可以被11整除,所以,搞一下就可以了
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 int cur = 0,n,m,d[2];
     4 int solve(int x) {
     5     int a[2] = {0};
     6     cur = 0;
     7     while(x) {
     8         a[cur^1] += x%10;
     9         x /= 10;
    10         cur ^= 1;
    11     }
    12     if(cur&1) swap(d[0],d[1]);
    13     d[0] += a[0];
    14     d[1] += a[1];
    15     return d[0] + d[1];
    16 }
    17 int main() {
    18     int cs = 1;
    19     while(scanf("%d%d",&n,&m),(~n) && (~m)) {
    20         d[0] = d[1] = 0;
    21         for(int i = 0; i <= m; ++i) n = solve(n);
    22         printf("Case #%d: %s
    ",cs++,abs(d[0]-d[1])%11?"No":"Yes");
    23     }
    24     return 0;
    25 }
    View Code
  • 相关阅读:
    图像轮廓最大内接矩形的求法
    python利用sift和surf进行图像配准
    Faster Rcnn随笔
    opencv利用svm训练
    灰度图片均衡化源码
    彩色直方图(源码)
    Tensorflow内存暴涨问题
    C++写入txt
    C++生成dll以及调用(函数)和类
    列表元素的几种统计方法总结(嵌套列表)
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4722245.html
Copyright © 2011-2022 走看看