zoukankan      html  css  js  c++  java
  • 2015 Multi-University Training Contest 10 hdu 5411 CRB and Puzzle

    CRB and Puzzle

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 301    Accepted Submission(s): 127

    Problem Description
    CRB is now playing Jigsaw Puzzle.
    There are N kinds of pieces with infinite supply.
    He can assemble one piece to the right side of the previously assembled one.
    For each kind of pieces, only restricted kinds can be assembled with.
    How many different patterns he can assemble with at most M pieces? (Two patterns P and Q are considered different if their lengths are different or there exists an integer j such that j-th piece of P is different from corresponding piece of Q.)

    Input
    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
    The first line contains two integers N, M denoting the number of kinds of pieces and the maximum number of moves.
    Then N lines follow. i-th line is described as following format.
    $k a_1 a_2 ... a_k$
    Here k is the number of kinds which can be assembled to the right of the i-th kind. Next k integers represent each of them.
    $1 leq T leq 20$
    $1 leq N leq 50$
    $1 leq M leq 10^5$
    $0 leq k leq N$
    $1 leq a1 < a2 < … < ak leq N$

    Output
    For each test case, output a single integer - number of different patterns modulo 2015.

    Sample Input
    1
    3 2
    1 2
    1 3
    0

    Sample Output
    6


    Hint
    possible patterns are ∅, 1, 2, 3, 1→2, 2→3

    Author
    KUT(DPRK)

    解题:矩阵快速幂+动态规划

    $$egin{bmatrix} ret & dp1 & dp2 & dp3 \ end{bmatrix} imes egin{bmatrix} 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 \ 1 & 0 & 1 & 0 \ end{bmatrix} $$

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int maxn = 60;
     4 const int mod = 2015;
     5 int n,m;
     6 struct Matrix {
     7     int m[maxn][maxn];
     8     void init() {
     9         memset(m,0,sizeof m);
    10     }
    11     void setOne() {
    12         init();
    13         for(int i = 0; i < maxn; ++i) m[i][i] = 1;
    14     }
    15     Matrix() {
    16         init();
    17     }
    18     Matrix operator*(const Matrix &t)const {
    19         Matrix ret;
    20         for(int k = 0; k <= n; ++k) {
    21             for(int i = 0; i <= n; ++i)
    22                 for(int j = 0; j <= n; ++j)
    23                     ret.m[i][j] = (ret.m[i][j] + m[i][k]*t.m[k][j])%mod;
    24         }
    25         return ret;
    26     }
    27 };
    28 Matrix a,b,c;
    29 int main() {
    30     int kase;
    31     scanf("%d",&kase);
    32     while(kase--) {
    33         scanf("%d%d",&n,&m);
    34         b.init();
    35         a.init();
    36         c.setOne();
    37         for(int i = 1,t,k; i <= n; ++i) {
    38             scanf("%d",&t);
    39             while(t--) {
    40                 scanf("%d",&k);
    41                 b.m[k][i] = 1;
    42             }
    43         }
    44         for(int i = 0; i <= n; ++i) {
    45             a.m[0][i] = 1;
    46             b.m[i][0] = 1;
    47         }
    48         a.m[0][0] = 0;
    49         while(m) {
    50             if(m&1) c = c*b;
    51             m >>= 1;
    52             b = b*b;
    53         }
    54         a = a*c;
    55         printf("%d
    ",(a.m[0][0]+1)%mod);
    56     }
    57     return 0;
    58 }
    View Code
  • 相关阅读:
    vue中的具名插槽
    vue中默认插槽slot
    局部组件使用指令-方法-过滤器-计算属性
    vue创建局部组件
    Class Metaprogramming
    Attribute Descriptors
    Dynamic Attributes and Properties
    Concurrency with asyncio
    Concurrency with Futures
    Coroutines
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4749113.html
Copyright © 2011-2022 走看看