zoukankan      html  css  js  c++  java
  • POJ 1947 Rebuilding Roads

    Rebuilding Roads

    Time Limit: 1000ms
    Memory Limit: 30000KB
    This problem will be judged on PKU. Original ID: 1947
    64-bit integer IO format: %lld      Java class name: Main
     
    The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree. 

    Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.
     

    Input

    * Line 1: Two integers, N and P 

    * Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 
     

    Output

    A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 
     

    Sample Input

    11 6
    1 2
    1 3
    1 4
    1 5
    2 6
    2 7
    2 8
    4 9
    4 10
    4 11
    

    Sample Output

    2

    Hint

    [A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 
     

    Source

     
    解题:树形dp
     
    dp[i][j]表示以i为根保留j个点最少需要去掉多少条边
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <vector>
     5 using namespace std;
     6 const int maxn = 200;
     7 int n,k,ret,dp[maxn][maxn],son[maxn];
     8 vector<int>g[maxn];
     9 int dfs(int u){
    10     son[u] = 1;
    11     for(int i = g[u].size()-1; i >= 0; --i) son[u] += dfs(g[u][i]);
    12     dp[u][1] = g[u].size();//u有g[u].size()个直系儿子 删除儿子还剩自己
    13     for(int i = g[u].size()-1; i >= 0; --i){
    14         for(int j = son[u]; j > 0; --j)
    15             for(int k = 1; k < j && k <= son[g[u][i]]; ++k)
    16                 dp[u][j] = min(dp[u][j],dp[u][j - k] + dp[g[u][i]][k] - 1);
    17     }
    18     if(son[u] >= k) ret = min(ret,dp[u][k] + (u != 1));
    19     return son[u];
    20 }
    21 int main(){
    22     int u,v;
    23     while(~scanf("%d%d",&n,&k)){
    24         for(int i = 0; i < maxn; ++i) g[i].clear();
    25         for(int i = 1; i < n; ++i){
    26             scanf("%d%d",&u,&v);
    27             g[u].push_back(v);
    28         }
    29         memset(dp,0x3f,sizeof dp);
    30         memset(&ret,0x3f,sizeof ret);
    31         dfs(1);
    32         printf("%d
    ",ret);
    33     }
    34     return 0;
    35 }
    View Code
  • 相关阅读:
    数据仓库与数据挖掘的一些基本概念
    System.currentTimeMillis();
    html练习(3)
    HDU 1556 Color the ball【算法的优化】
    ubuntu12.04 安装配置jdk1.7
    java中的switch用String作为条件
    oracle中 connect by prior 递归算法
    C#复习题
    AngularJS:Http
    AngularJS:Service
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4789893.html
Copyright © 2011-2022 走看看