zoukankan      html  css  js  c++  java
  • POJ 1947 Rebuilding Roads

    Rebuilding Roads

    Time Limit: 1000ms
    Memory Limit: 30000KB
    This problem will be judged on PKU. Original ID: 1947
    64-bit integer IO format: %lld      Java class name: Main
     
    The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, number 1..N) after the terrible earthquake last May. The cows didn't have time to rebuild any extra roads, so now there is exactly one way to get from any given barn to any other barn. Thus, the farm transportation system can be represented as a tree. 

    Farmer John wants to know how much damage another earthquake could do. He wants to know the minimum number of roads whose destruction would isolate a subtree of exactly P (1 <= P <= N) barns from the rest of the barns.
     

    Input

    * Line 1: Two integers, N and P 

    * Lines 2..N: N-1 lines, each with two integers I and J. Node I is node J's parent in the tree of roads. 
     

    Output

    A single line containing the integer that is the minimum number of roads that need to be destroyed for a subtree of P nodes to be isolated. 
     

    Sample Input

    11 6
    1 2
    1 3
    1 4
    1 5
    2 6
    2 7
    2 8
    4 9
    4 10
    4 11
    

    Sample Output

    2

    Hint

    [A subtree with nodes (1, 2, 3, 6, 7, 8) will become isolated if roads 1-4 and 1-5 are destroyed.] 
     

    Source

     
    解题:树形dp
     
    dp[i][j]表示以i为根保留j个点最少需要去掉多少条边
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <vector>
     5 using namespace std;
     6 const int maxn = 200;
     7 int n,k,ret,dp[maxn][maxn],son[maxn];
     8 vector<int>g[maxn];
     9 int dfs(int u){
    10     son[u] = 1;
    11     for(int i = g[u].size()-1; i >= 0; --i) son[u] += dfs(g[u][i]);
    12     dp[u][1] = g[u].size();//u有g[u].size()个直系儿子 删除儿子还剩自己
    13     for(int i = g[u].size()-1; i >= 0; --i){
    14         for(int j = son[u]; j > 0; --j)
    15             for(int k = 1; k < j && k <= son[g[u][i]]; ++k)
    16                 dp[u][j] = min(dp[u][j],dp[u][j - k] + dp[g[u][i]][k] - 1);
    17     }
    18     if(son[u] >= k) ret = min(ret,dp[u][k] + (u != 1));
    19     return son[u];
    20 }
    21 int main(){
    22     int u,v;
    23     while(~scanf("%d%d",&n,&k)){
    24         for(int i = 0; i < maxn; ++i) g[i].clear();
    25         for(int i = 1; i < n; ++i){
    26             scanf("%d%d",&u,&v);
    27             g[u].push_back(v);
    28         }
    29         memset(dp,0x3f,sizeof dp);
    30         memset(&ret,0x3f,sizeof ret);
    31         dfs(1);
    32         printf("%d
    ",ret);
    33     }
    34     return 0;
    35 }
    View Code
  • 相关阅读:
    数组构建完全二叉树
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    [.net core学习] .net core中的MD5CryptoServiceProvider取代方法
    交互式访问数据库
    Jackson /常用注解/ annotation
    vue图表组件使用,组件文档echarts
    java8 Optional 容器类
    java8 : Lambda 方法引用
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4789893.html
Copyright © 2011-2022 走看看