zoukankan      html  css  js  c++  java
  • HDU 4291 A Short problem

    A Short problem

    Time Limit: 1000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 4291
    64-bit integer IO format: %I64d      Java class name: Main
     
     According to a research, VIM users tend to have shorter fingers, compared with Emacs users.
      Hence they prefer problems short, too. Here is a short one:
      Given $n (1 leq n leq 10^{18})$, You should solve for 
    [g(g(g(n))) mod 10^9 + 7]

      where
    [g(n) = 3g(n - 1) + g(n - 2)]

    [g(1) = 1]

    [g(0) = 0]

     

    Input

      There are several test cases. For each test case there is an integer n in a single line.
      Please process until EOF (End Of File).
     

    Output

      For each test case, please print a single line with a integer, the corresponding answer to this case.
     

    Sample Input

    0
    1
    2

    Sample Output

    0
    1
    42837

    Source

     
    解题:矩阵快速幂,关键在于如何找到内部循环的的模对象
     
     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 const int maxn = 3;
     5 LL mod = 1000000007;
     6 const int n = 2;
     7 struct Matrix {
     8     LL m[maxn][maxn];
     9     void init() {
    10         memset(m,0,sizeof m);
    11     }
    12     Matrix() {
    13         init();
    14     }
    15     Matrix operator*(const Matrix &rhs) const {
    16         Matrix ret;
    17         for(int k = 0; k < n; ++k) {
    18             for(int i = 0; i < n; ++i)
    19                 for(int j = 0; j < n; ++j)
    20                     ret.m[i][j] = (ret.m[i][j] + m[i][k]*rhs.m[k][j]%mod)%mod;
    21 
    22         }
    23         return ret;
    24     }
    25     void set_a() {
    26         init();
    27         m[0][0] = 0;
    28         m[0][1] = 1;
    29     }
    30     void set_b() {
    31         init();
    32         m[0][0] = 0;
    33         m[0][1] = m[1][0] = 1;
    34         m[1][1] = 3;
    35     }
    36     void print() {
    37         for(int i = 0; i < n; ++i) {
    38             for(int j = 0; j < n; ++j)
    39                 cout<<m[i][j]<<" ";
    40             cout<<endl;
    41         }
    42     }
    43 };
    44 Matrix a,b;
    45 LL quickPow(LL index,LL md) {
    46     a.set_a();
    47     b.set_b();
    48     mod = md;
    49     while(index) {
    50         if(index&1) {
    51             a = a*b;
    52         }
    53         index >>= 1;
    54         b = b*b;
    55     }
    56     return a.m[0][0];
    57 }
    58 int main() {
    59     LL m;
    60     while(~scanf("%I64d",&m))
    61         printf("%I64d
    ",quickPow(quickPow(quickPow(m,183120),222222224),1000000007));
    62     return 0;
    63 }
    View Code
  • 相关阅读:
    poj3693 Maximum repetition substring (后缀数组+rmq)
    spoj687 REPEATS
    bzoj3626: [LNOI2014]LCA (树链剖分+离线线段树)
    bzoj2243 [SDOI2011]染色 (树链剖分+线段树)
    SPOJ QTREE- Query on a tree (树链剖分)
    hdu5662 YJQQQAQ and the function (单调栈)
    hdu4348 To the moon (主席树 || 离线线段树)
    hdu3565 Bi-peak Number (有上界和下界的数位dp)
    修改文件上传大小限制
    强制不按行
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4816245.html
Copyright © 2011-2022 走看看