zoukankan      html  css  js  c++  java
  • HDU 2462 The Luckiest number

    The Luckiest number

    Time Limit: 1000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 2462
    64-bit integer IO format: %I64d      Java class name: Main
    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
     

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.
     

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
     

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    Source

     
    解题:

    首先,由题意可以得出,(10^x - 1)/ 9 * 8 = L * p(p是一个未知数,但必定是整数)。

               然后对上式进行移项处理,得:(10^x - 1) = 9 * L * p / 8。

               设m = 9 * L / gcd(L, 8),则有(10^x - 1) = m * p'。p’是必然存在的一个整数。

               然后问题就转化成为了 10^x = 1(mod m),观察此式,显然,m和10必定互质。

               于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

    转自 OK_again

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 using LL = long long;
     4 const int maxn = 400110;
     5 LL mul(LL a, LL b, LL mod) {
     6     LL ret = 0;
     7     while(b) {
     8         if(b&1) ret = (ret + a) % mod;
     9         a = (a<<1)%mod;
    10         b >>= 1;
    11     }
    12     return ret;
    13 }
    14 LL quickPow(LL base,LL index,LL mod){
    15     LL ret = 1;
    16     while(index){
    17         if(index&1) ret = mul(ret,base,mod);
    18         index >>= 1;
    19         base = mul(base,base,mod);
    20     }
    21     return ret;
    22 }
    23 bool np[maxn] = {true,true};
    24 int p[maxn],tot;
    25 void init(){
    26     for(int i = 2; i < maxn; ++i){
    27         if(!np[i]) p[tot++] = i;
    28         for(int j = 0; j < tot && p[j]*i < maxn; ++j){
    29             np[p[j]*i] = true;
    30             if(i%p[j] == 0) break;
    31         }
    32     }
    33 }
    34 LL Euler(LL n){
    35     LL ret = n;
    36     for(int i = 0; (LL)p[i]*p[i] <= n; ++i){
    37         if(n%p[i] == 0){
    38             ret = ret/p[i]*(p[i] - 1);
    39             while(n%p[i] == 0) n /= p[i];
    40         }
    41     }
    42     if(n > 1) ret = ret/n*(n-1);
    43     return ret;
    44 }
    45 vector<int>F;
    46 void Fn(LL n){
    47     F.clear();
    48     for(int i = 0; i < tot && n > 1; ++i){
    49         while(n%p[i] == 0){
    50             n /= p[i];
    51             F.push_back(p[i]);
    52         }
    53     }
    54     if(n > 1) F.push_back(n);
    55 }
    56 int main(){
    57     init();
    58     LL L;
    59     int cs = 1;
    60     while(scanf("%I64d",&L),L){
    61         LL m = 9*L/__gcd(L,8LL);
    62         if(__gcd(m,10LL) != 1){
    63             printf("Case %d: 0
    ",cs++);
    64             continue;
    65         }
    66         LL x = Euler(m);
    67         Fn(x);
    68         for(auto it:F)
    69             if(quickPow(10,x/it,m) == 1) x /= it;
    70         printf("Case %d: %I64d
    ",cs++,x);
    71     }
    72     return 0;
    73 }
    View Code
  • 相关阅读:
    DFT
    BSDL
    穆尼里奥:未派上最好点球手;齐达内成功并不意外
    module使用和设置
    APU (美国AMD公司研发的加速处理器)
    Lucio: We avoided Mourinho after every loss
    高位压迫——萨基给世界足坛带来的技术革命
    穆里尼奥:曼联没有在今夏尝试过签下C罗
    Linux 的 Out-of-Memory (OOM) Killer
    shell source命令说明
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4935423.html
Copyright © 2011-2022 走看看