zoukankan      html  css  js  c++  java
  • HDU 2462 The Luckiest number

    The Luckiest number

    Time Limit: 1000ms
    Memory Limit: 32768KB
    This problem will be judged on HDU. Original ID: 2462
    64-bit integer IO format: %I64d      Java class name: Main
    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
     

    Input

    The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

    The last test case is followed by a line containing a zero.
     

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
     

    Sample Input

    8
    11
    16
    0

    Sample Output

    Case 1: 1
    Case 2: 2
    Case 3: 0

    Source

     
    解题:

    首先,由题意可以得出,(10^x - 1)/ 9 * 8 = L * p(p是一个未知数,但必定是整数)。

               然后对上式进行移项处理,得:(10^x - 1) = 9 * L * p / 8。

               设m = 9 * L / gcd(L, 8),则有(10^x - 1) = m * p'。p’是必然存在的一个整数。

               然后问题就转化成为了 10^x = 1(mod m),观察此式,显然,m和10必定互质。

               于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

    转自 OK_again

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 using LL = long long;
     4 const int maxn = 400110;
     5 LL mul(LL a, LL b, LL mod) {
     6     LL ret = 0;
     7     while(b) {
     8         if(b&1) ret = (ret + a) % mod;
     9         a = (a<<1)%mod;
    10         b >>= 1;
    11     }
    12     return ret;
    13 }
    14 LL quickPow(LL base,LL index,LL mod){
    15     LL ret = 1;
    16     while(index){
    17         if(index&1) ret = mul(ret,base,mod);
    18         index >>= 1;
    19         base = mul(base,base,mod);
    20     }
    21     return ret;
    22 }
    23 bool np[maxn] = {true,true};
    24 int p[maxn],tot;
    25 void init(){
    26     for(int i = 2; i < maxn; ++i){
    27         if(!np[i]) p[tot++] = i;
    28         for(int j = 0; j < tot && p[j]*i < maxn; ++j){
    29             np[p[j]*i] = true;
    30             if(i%p[j] == 0) break;
    31         }
    32     }
    33 }
    34 LL Euler(LL n){
    35     LL ret = n;
    36     for(int i = 0; (LL)p[i]*p[i] <= n; ++i){
    37         if(n%p[i] == 0){
    38             ret = ret/p[i]*(p[i] - 1);
    39             while(n%p[i] == 0) n /= p[i];
    40         }
    41     }
    42     if(n > 1) ret = ret/n*(n-1);
    43     return ret;
    44 }
    45 vector<int>F;
    46 void Fn(LL n){
    47     F.clear();
    48     for(int i = 0; i < tot && n > 1; ++i){
    49         while(n%p[i] == 0){
    50             n /= p[i];
    51             F.push_back(p[i]);
    52         }
    53     }
    54     if(n > 1) F.push_back(n);
    55 }
    56 int main(){
    57     init();
    58     LL L;
    59     int cs = 1;
    60     while(scanf("%I64d",&L),L){
    61         LL m = 9*L/__gcd(L,8LL);
    62         if(__gcd(m,10LL) != 1){
    63             printf("Case %d: 0
    ",cs++);
    64             continue;
    65         }
    66         LL x = Euler(m);
    67         Fn(x);
    68         for(auto it:F)
    69             if(quickPow(10,x/it,m) == 1) x /= it;
    70         printf("Case %d: %I64d
    ",cs++,x);
    71     }
    72     return 0;
    73 }
    View Code
  • 相关阅读:
    服务端渲染和客户端渲染
    node(基础)_node.js中的http服务以及模板引擎的渲染
    node基础(二)_模块以及处理乱码问题
    node(基础)_node中的javascript
    vue购物车和地址选配(三)
    nyoj 169 素数
    nyoj 205 求余数
    nyoj 65另一种阶乘问题
    nyoj 734奇数阶魔方
    nyoj64 鸡兔同笼
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/4935423.html
Copyright © 2011-2022 走看看