zoukankan      html  css  js  c++  java
  • 点到平面的距离计算

    点到平面的距离计算

    点到平面的距离
    如上图所示,假设现在有一平面(S)

    [WX+b = 0 ]

    其中(W,X)都是向量,现有平面外一点(Q),求(Q)到平面的距离。

    我们假设平面内有一点(P),并且平面的法向量为(overrightarrow{n}=(W_1, W_2, cdots, W_n)),那么有(Q)(S)的距离为

    [egin{split} d &= |PQ|cos heta\ &= dfrac{|overrightarrow{n}|}{|overrightarrow{n}|}|PQ|cos heta\ &= dfrac{overrightarrow{n}overrightarrow{PQ}}{|overrightarrow{n}|}\ &= dfrac{W_1(Q_1 - P_1) + W_2(Q_2 - P_2) + cdots + W_n(Q_n - P_n)}{sqrt{W_1^2 + W_2^2 + cdots + W_n^2}}\ &= dfrac{WQ - WP}{sqrt{W_1^2 + W_2^2 + cdots + W_n^2}}\ &= dfrac{WQ - (-b)}{sqrt{W_1^2 + W_2^2 + cdots + W_n^2}}\ &= dfrac{WQ + b }{sqrt{W_1^2 + W_2^2 + cdots + W_n^2}} end{split} ]

    其中( heta)为过(P)点的(S)法向量与(PQ)的夹角,因为(P)(S)内的一点,所以有(WP+b=0)所以可以将(WP)替换为(-b)

    综上所述,所以平面外一点(X)到平面的距离公式为

    [d = dfrac{1}{|W|}(WX+b) ]

    由于距离通常是个大于等于0的数,所以需要取绝对值。点到直线的距离是点到平面的特例,上式依然可行

  • 相关阅读:
    Random类
    类型转换
    一个简单的Web登录程序
    第一个Servlet程序
    使用MyEclipse开发 服务器的部署方式(续)
    MyEclipse配置
    Tomact问题
    Tomact配置
    HTTP基础:URL格式、 HTTP请求、响应、消息
    关闭二维码
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/9957651.html
Copyright © 2011-2022 走看看