zoukankan      html  css  js  c++  java
  • fork 在 Linux 内核里面的实现

    太闲了看了一下 fork 在内核里面的工作
    内核版本:Linux kernel 5.6.14

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L2522

    SYSCALL_DEFINE0(fork)
    {
    #ifdef CONFIG_MMU
        struct kernel_clone_args args = {
            .exit_signal = SIGCHLD,
        };
    
        return _do_fork(&args);
    #else
        /* can not support in nommu mode */
        return -EINVAL;
    #endif
    }
    

    其实在内核里面 fork vfork clone 最终都是会调用 _do_fork
    直接跟进去

    _do_frok

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L2403

    long _do_fork(struct kernel_clone_args *args)
    {
        // 取出 flag 参数
        u64 clone_flags = args->flags;
        struct completion vfork;
        struct pid *pid;
        // 创建一个 进程描述符
        struct task_struct *p;
        int trace = 0;
        long nr;
    ​
        /*
         * Determine whether and which event to report to ptracer.  When
         * called from kernel_thread or CLONE_UNTRACED is explicitly
         * requested, no event is reported; otherwise, report if the event
         * for the type of forking is enabled.
         */
        // 对 flag 标志进行检查,详细说明参见下面的 标志含义
        if (!(clone_flags & CLONE_UNTRACED)) {
            if (clone_flags & CLONE_VFORK)
                trace = PTRACE_EVENT_VFORK;
            else if (args->exit_signal != SIGCHLD)
                trace = PTRACE_EVENT_CLONE;
            else
                trace = PTRACE_EVENT_FORK;
            
           // 程序是否支持调试 trace 
           /*
           这是 ptrace_event_enabled 的源码
     * ptrace_event_enabled - test whether a ptrace event is enabled
     * @task: ptracee of interest
     * @event: %PTRACE_EVENT_* to test
     *
     * Test whether @event is enabled for ptracee @task.
     *
     * Returns %true if @event is enabled, %false otherwise.
    ​
    static inline bool ptrace_event_enabled(struct task_struct *task, int event)
    {
        return task->ptrace & PT_EVENT_FLAG(event);
    }
           */
            if (likely(!ptrace_event_enabled(current, trace)))
                trace = 0;
        }
    ​
       // fork 的主要工作 copy_process 生成新的进程 p
        p = copy_process(NULL, trace, NUMA_NO_NODE, args);
        add_latent_entropy();
    ​
        if (IS_ERR(p))
            return PTR_ERR(p);
    ​
        /*
         * Do this prior waking up the new thread - the thread pointer
         * might get invalid after that point, if the thread exits quickly.
         */
        trace_sched_process_fork(current, p);
    ​
        pid = get_task_pid(p, PIDTYPE_PID);
        nr = pid_vnr(pid);
    ​
        if (clone_flags & CLONE_PARENT_SETTID)
            put_user(nr, args->parent_tid);
    ​
        if (clone_flags & CLONE_VFORK) {
            p->vfork_done = &vfork;
            init_completion(&vfork);
            get_task_struct(p);
        }
    ​
        wake_up_new_task(p);
    ​
        /* forking complete and child started to run, tell ptracer */
        if (unlikely(trace))
            ptrace_event_pid(trace, pid);
    ​
        if (clone_flags & CLONE_VFORK) {
            if (!wait_for_vfork_done(p, &vfork))
                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
        }
    ​
        put_pid(pid);
        return nr;
    }
    

    标志含义

      CLONE_PARENT   创建的子进程的父进程是调用者的父进程,新进程与创建它的进程成了“兄弟”而不是“父子”
      CLONE_FS       子进程与父进程共享相同的文件系统,包括 root 、当前目录、 umask
      CLONE_FILES    子进程与父进程共享相同的文件描述符(file descriptor)表
      CLONE_NEWNS    在新的 namespace 启动子进程, namespace 描述了进程的文件 hierarchy
      CLONE_SIGHAND  子进程与父进程共享相同的信号处理(signal handler)表
      CLONE_PTRACE   若父进程被 trace ,子进程也被 trace
      CLONE_VFORK    父进程被挂起,直至子进程释放虚拟内存资源
      CLONE_VM       子进程与父进程运行于相同的内存空间
      CLONE_PID      子进程在创建时 PID 与父进程一致
      CLONE_THREAD   Linux 2.4 中增加以支持 POSIX 线程标准,子进程与父进程共享相同的线程群
    

    copy_process

    生成新的进程

    p = copy_process(NULL, trace, NUMA_NO_NODE, args);
    

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L1824
    这个函数有点长得可怕 在 Linux 5.6.14 下面一共 538 行,不能每一行都分析了,选重点吧

    /*
     * This creates a new process as a copy of the old one,
     * but does not actually start it yet.
     *
     * It copies the registers, and all the appropriate
     * parts of the process environment (as per the clone
     * flags). The actual kick-off is left to the caller.
     */
    static __latent_entropy struct task_struct *copy_process(
                        struct pid *pid,
                        int trace,
                        int node,
                        struct kernel_clone_args *args)
    {
        int pidfd = -1, retval;
        struct task_struct *p;
        struct multiprocess_signals delayed;
        struct file *pidfile = NULL;
        u64 clone_flags = args->flags;
        struct nsproxy *nsp = current->nsproxy;
    ​
        /*
         * Don't allow sharing the root directory with processes in a different
         * namespace
         */
        // 不同的命名空间(namespace)不允许共享 根目录(/) 其实共享根目录了那还玩啥,全透明了都
        // CLONE_NEWNS    在新的 namespace 启动子进程, namespace 描述了进程的文件 hierarchy
        // CLONE_FS       子进程与父进程共享相同的文件系统,包括 root 、当前目录、 umask
        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
            return ERR_PTR(-EINVAL);
    ​
        // namespace 用户隔离,这个东西曾经出了一个提权漏洞
        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
            return ERR_PTR(-EINVAL);
    ​
        /*
         * Thread groups must share signals as well, and detached threads
         * can only be started up within the thread group.
         */
        //CLONE_THREAD 子进程与父进程共享相同的线程群
        //共享相同的线程组不共享 signals 冲突
        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
            return ERR_PTR(-EINVAL);
    ​
        /*
         * Shared signal handlers imply shared VM. By way of the above,
         * thread groups also imply shared VM. Blocking this case allows
         * for various simplifications in other code.
         */
        //CLONE_SIGHAND  子进程与父进程共享相同的信号处理(signal handler)表
        //CLONE_VM       子进程与父进程运行于相同的内存空间
        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
            return ERR_PTR(-EINVAL);
    ​
        /*
         * Siblings of global init remain as zombies on exit since they are
         * not reaped by their parent (swapper). To solve this and to avoid
         * multi-rooted process trees, prevent global and container-inits
         * from creating siblings.
         */
        if ((clone_flags & CLONE_PARENT) &&
                    current->signal->flags & SIGNAL_UNKILLABLE)
            return ERR_PTR(-EINVAL);
    ​
        /*
         * If the new process will be in a different pid or user namespace
         * do not allow it to share a thread group with the forking task.
         */
        //新进程有独立的 pid
        //运行于另一个命名空间(namespace)的进程
        //都不允许共享线程组
        if (clone_flags & CLONE_THREAD) {
            if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
                (task_active_pid_ns(current) != nsp->pid_ns_for_children))
                return ERR_PTR(-EINVAL);
        }
    ​
        /*
         * If the new process will be in a different time namespace
         * do not allow it to share VM or a thread group with the forking task.
         */
        if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
            if (nsp->time_ns != nsp->time_ns_for_children)
                return ERR_PTR(-EINVAL);
        }
    ​
        if (clone_flags & CLONE_PIDFD) {
            /*
             * - CLONE_DETACHED is blocked so that we can potentially
             *   reuse it later for CLONE_PIDFD.
             * - CLONE_THREAD is blocked until someone really needs it.
             */
            if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
                return ERR_PTR(-EINVAL);
        }
    ​
        /*
         * Force any signals received before this point to be delivered
         * before the fork happens.  Collect up signals sent to multiple
         * processes that happen during the fork and delay them so that
         * they appear to happen after the fork.
         */
        sigemptyset(&delayed.signal);
        INIT_HLIST_NODE(&delayed.node);
    ​
        spin_lock_irq(&current->sighand->siglock);
        if (!(clone_flags & CLONE_THREAD))
            hlist_add_head(&delayed.node, &current->signal->multiprocess);
        recalc_sigpending();
        spin_unlock_irq(&current->sighand->siglock);
        retval = -ERESTARTNOINTR;
        if (signal_pending(current))
            goto fork_out;
    ​
        retval = -ENOMEM;
        // 重点操作,就是在里面复制 父进程 的进程描述符,详细分析见下面
        p = dup_task_struct(current, node);
        if (!p)
            goto fork_out;
    ​
        /*
         * This _must_ happen before we call free_task(), i.e. before we jump
         * to any of the bad_fork_* labels. This is to avoid freeing
         * p->set_child_tid which is (ab)used as a kthread's data pointer for
         * kernel threads (PF_KTHREAD).
         */
        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
        /*
         * Clear TID on mm_release()?
         */
        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
    ​
        ftrace_graph_init_task(p);
    ​
        rt_mutex_init_task(p);
    ​
    #ifdef CONFIG_PROVE_LOCKING
        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
    #endif
        retval = -EAGAIN;
        // RLIMIT_NPROC 每个 real id(ruid) 可拥有的最大子进程数
        if (atomic_read(&p->real_cred->user->processes) >=
                task_rlimit(p, RLIMIT_NPROC)) {
            if (p->real_cred->user != INIT_USER &&
                !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
                goto bad_fork_free;
        }
        current->flags &= ~PF_NPROC_EXCEEDED;
    ​
        // 顾名思义,复制 cred,详细源码下面分析
        // 官方描述:Copy credentials for the new process created by fork()
        // cred 结构体其实就是将原先 task_struct 中的一些涉及安全和信任的字段包装成了一个结构体
        retval = copy_creds(p, clone_flags);
        if (retval < 0)
            goto bad_fork_free;
    ​
        /*
         * If multiple threads are within copy_process(), then this check
         * triggers too late. This doesn't hurt, the check is only there
         * to stop root fork bombs.
         */
        retval = -EAGAIN;
        if (nr_threads >= max_threads)
            goto bad_fork_cleanup_count;
    ​
        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
        // task_struct 的 flag 字段
        // via:https://elixir.bootlin.com/linux/v5.6.14/source/include/linux/sched.h#L1461
        // PF_SUPERPRIV 使用超级用户权限
        // PF_IDLE 标志进程空闲
        // PF_WQ_WORKER 标志是工作者线程
        // PF_FORKNOEXEC fork 但是不执行
        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
        p->flags |= PF_FORKNOEXEC;
        
        // 初始化进程亲属关系链表
        INIT_LIST_HEAD(&p->children);
        INIT_LIST_HEAD(&p->sibling);
        rcu_copy_process(p);
        // vfork 会用到的字段
        p->vfork_done = NULL;
        spin_lock_init(&p->alloc_lock);
    ​
        /*
    static inline void sigemptyset(sigset_t *set)
    {
        switch (_NSIG_WORDS) {
        default:
            memset(set, 0, sizeof(sigset_t));
            break;
        case 2: set->sig[1] = 0;
            // fall through 
        case 1: set->sig[0] = 0;
            break;
        }
    }
    分支说明:
    x86:case 1
    x64:case 2
    其他:default
    ​
    pending 字段:进程上还需要处理的信号
        */
        init_sigpending(&p->pending);
    ​
        // 初始化 时间数据成员
        p->utime = p->stime = p->gtime = 0;
    #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
        p->utimescaled = p->stimescaled = 0;
    #endif
        prev_cputime_init(&p->prev_cputime);
    ​
    #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
        seqcount_init(&p->vtime.seqcount);
        //starttime 进程的开始执行时间
        p->vtime.starttime = 0;
        p->vtime.state = VTIME_INACTIVE;
    #endif
    ​
    #if defined(SPLIT_RSS_COUNTING)
        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
    #endif
    ​
        // 复制父进程的 时间延迟值
        p->default_timer_slack_ns = current->timer_slack_ns;
    ​
    #ifdef CONFIG_PSI
        p->psi_flags = 0;
    #endif
    ​
        // 等价 memset(ioac, 0, sizeof(p->ioac));
        task_io_accounting_init(&p->ioac);
        acct_clear_integrals(p);
    ​
        posix_cputimers_init(&p->posix_cputimers);
    ​
        p->io_context = NULL;
        audit_set_context(p, NULL);
        // cgroup 和 init_css_set
        // via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/cgroup/cgroup.c#L5870
        cgroup_fork(p);
    #ifdef CONFIG_NUMA
        p->mempolicy = mpol_dup(p->mempolicy);
        if (IS_ERR(p->mempolicy)) {
            retval = PTR_ERR(p->mempolicy);
            p->mempolicy = NULL;
            goto bad_fork_cleanup_threadgroup_lock;
        }
    #endif
    #ifdef CONFIG_CPUSETS
        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
        seqcount_init(&p->mems_allowed_seq);
    #endif
    #ifdef CONFIG_TRACE_IRQFLAGS
        // 初始化中断请求
        p->irq_events = 0;
        p->hardirqs_enabled = 0;
        p->hardirq_enable_ip = 0;
        p->hardirq_enable_event = 0;
        p->hardirq_disable_ip = _THIS_IP_;
        p->hardirq_disable_event = 0;
        p->softirqs_enabled = 1;
        p->softirq_enable_ip = _THIS_IP_;
        p->softirq_enable_event = 0;
        p->softirq_disable_ip = 0;
        p->softirq_disable_event = 0;
        p->hardirq_context = 0;
        p->softirq_context = 0;
    #endif
    ​
        p->pagefault_disabled = 0;
    ​
    #ifdef CONFIG_LOCKDEP
        lockdep_init_task(p);
    #endif
    ​
    #ifdef CONFIG_DEBUG_MUTEXES
        p->blocked_on = NULL; /* not blocked yet */
    #endif
    #ifdef CONFIG_BCACHE
        p->sequential_io    = 0;
        p->sequential_io_avg    = 0;
    #endif
    ​
        /* Perform scheduler related setup. Assign this task to a CPU. */
        // 把进程加入调度队列
        retval = sched_fork(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_policy;
    ​
        retval = perf_event_init_task(p);
        if (retval)
            goto bad_fork_cleanup_policy;
        retval = audit_alloc(p);
        if (retval)
            goto bad_fork_cleanup_perf;
        /* copy all the process information */
        // 复制所有进程信息
        shm_init_task(p); // #define shm_init_task(task) INIT_LIST_HEAD(&(task)->sysvshm.shm_clist)
        
        // 用 kzalloc 给 security 分配内存
        retval = security_task_alloc(p, clone_flags);
        if (retval)
            goto bad_fork_cleanup_audit;
        // 这个函数直接返回 0 
        // via:https://elixir.bootlin.com/linux/v5.6.14/source/include/linux/sem.h#L25
        retval = copy_semundo(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_security;
        
        // 复制父进程打开的文件信息,详细见下面分析
        retval = copy_files(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_semundo;
        
        // 复制父进程 fs_struct 信息,详细见下面分析
        retval = copy_fs(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_files;
        
        retval = copy_sighand(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_fs;
        
        // 复制父进程所接收的信号
        retval = copy_signal(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_sighand;
        
        // 复制父进程的内存管理相关信息,详细见下面分析
        retval = copy_mm(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_signal;
        
        // 复制父进程的 namespaces
        retval = copy_namespaces(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_mm;
        
        // 复制父进程的 io_context 上下文信息,详细见下面分析
        retval = copy_io(clone_flags, p);
        if (retval)
            goto bad_fork_cleanup_namespaces;
        
        // 复制线程的 
        retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
                     args->tls);
        if (retval)
            goto bad_fork_cleanup_io;
    ​
        stackleak_task_init(p);
    ​
        if (pid != &init_struct_pid) {
            pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
                    args->set_tid_size);
            if (IS_ERR(pid)) {
                retval = PTR_ERR(pid);
                goto bad_fork_cleanup_thread;
            }
        }
    ​
        /*
         * This has to happen after we've potentially unshared the file
         * descriptor table (so that the pidfd doesn't leak into the child
         * if the fd table isn't shared).
         */
        if (clone_flags & CLONE_PIDFD) {
            retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
            if (retval < 0)
                goto bad_fork_free_pid;
    ​
            pidfd = retval;
    ​
            pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
                              O_RDWR | O_CLOEXEC);
            if (IS_ERR(pidfile)) {
                put_unused_fd(pidfd);
                retval = PTR_ERR(pidfile);
                goto bad_fork_free_pid;
            }
            get_pid(pid);   /* held by pidfile now */
    ​
            retval = put_user(pidfd, args->pidfd);
            if (retval)
                goto bad_fork_put_pidfd;
        }
    ​
    #ifdef CONFIG_BLOCK
        p->plug = NULL;
    #endif
        futex_init_task(p);
    ​
        /*
         * sigaltstack should be cleared when sharing the same VM
         */
        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
            sas_ss_reset(p);
    ​
        /*
         * Syscall tracing and stepping should be turned off in the
         * child regardless of CLONE_PTRACE.
         */
        user_disable_single_step(p);
        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
    #ifdef TIF_SYSCALL_EMU
        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
    #endif
        clear_tsk_latency_tracing(p);
    ​
        /* ok, now we should be set up.. */
        p->pid = pid_nr(pid);
        if (clone_flags & CLONE_THREAD) {
            p->exit_signal = -1;
            p->group_leader = current->group_leader;
            p->tgid = current->tgid;
        } else {
            if (clone_flags & CLONE_PARENT)
                p->exit_signal = current->group_leader->exit_signal;
            else
                p->exit_signal = args->exit_signal;
            p->group_leader = p;
            p->tgid = p->pid;
        }
    ​
        p->nr_dirtied = 0;
        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
        p->dirty_paused_when = 0;
    ​
        p->pdeath_signal = 0;
        INIT_LIST_HEAD(&p->thread_group);
        p->task_works = NULL;
    ​
        cgroup_threadgroup_change_begin(current);
        /*
         * Ensure that the cgroup subsystem policies allow the new process to be
         * forked. It should be noted the the new process's css_set can be changed
         * between here and cgroup_post_fork() if an organisation operation is in
         * progress.
         */
        retval = cgroup_can_fork(p);
        if (retval)
            goto bad_fork_cgroup_threadgroup_change_end;
    ​
        /*
         * From this point on we must avoid any synchronous user-space
         * communication until we take the tasklist-lock. In particular, we do
         * not want user-space to be able to predict the process start-time by
         * stalling fork(2) after we recorded the start_time but before it is
         * visible to the system.
         */
    ​
        p->start_time = ktime_get_ns();
        p->start_boottime = ktime_get_boottime_ns();
    ​
        /*
         * Make it visible to the rest of the system, but dont wake it up yet.
         * Need tasklist lock for parent etc handling!
         */
        write_lock_irq(&tasklist_lock);
    ​
        /* CLONE_PARENT re-uses the old parent */
        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
            p->real_parent = current->real_parent;
            p->parent_exec_id = current->parent_exec_id;
        } else {
            p->real_parent = current;
            p->parent_exec_id = current->self_exec_id;
        }
    ​
        klp_copy_process(p);
    ​
        spin_lock(&current->sighand->siglock);
    ​
        /*
         * Copy seccomp details explicitly here, in case they were changed
         * before holding sighand lock.
         */
        copy_seccomp(p);
    ​
        rseq_fork(p, clone_flags);
    ​
        /* Don't start children in a dying pid namespace */
        if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
            retval = -ENOMEM;
            goto bad_fork_cancel_cgroup;
        }
    ​
        /* Let kill terminate clone/fork in the middle */
        if (fatal_signal_pending(current)) {
            retval = -EINTR;
            goto bad_fork_cancel_cgroup;
        }
    ​
        /* past the last point of failure */
        if (pidfile)
            fd_install(pidfd, pidfile);
    ​
        init_task_pid_links(p);
        if (likely(p->pid)) {
            ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
    ​
            init_task_pid(p, PIDTYPE_PID, pid);
            if (thread_group_leader(p)) {
                init_task_pid(p, PIDTYPE_TGID, pid);
                init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
                init_task_pid(p, PIDTYPE_SID, task_session(current));
    ​
                if (is_child_reaper(pid)) {
                    ns_of_pid(pid)->child_reaper = p;
                    p->signal->flags |= SIGNAL_UNKILLABLE;
                }
                p->signal->shared_pending.signal = delayed.signal;
                p->signal->tty = tty_kref_get(current->signal->tty);
                /*
                 * Inherit has_child_subreaper flag under the same
                 * tasklist_lock with adding child to the process tree
                 * for propagate_has_child_subreaper optimization.
                 */
                p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
                                 p->real_parent->signal->is_child_subreaper;
                list_add_tail(&p->sibling, &p->real_parent->children);
                list_add_tail_rcu(&p->tasks, &init_task.tasks);
                attach_pid(p, PIDTYPE_TGID);
                attach_pid(p, PIDTYPE_PGID);
                attach_pid(p, PIDTYPE_SID);
                __this_cpu_inc(process_counts);
            } else {
                current->signal->nr_threads++;
                atomic_inc(&current->signal->live);
                refcount_inc(&current->signal->sigcnt);
                task_join_group_stop(p);
                list_add_tail_rcu(&p->thread_group,
                          &p->group_leader->thread_group);
                list_add_tail_rcu(&p->thread_node,
                          &p->signal->thread_head);
            }
            attach_pid(p, PIDTYPE_PID);
            nr_threads++;
        }
        total_forks++;
        hlist_del_init(&delayed.node);
        spin_unlock(&current->sighand->siglock);
        syscall_tracepoint_update(p);
        write_unlock_irq(&tasklist_lock);
    ​
        proc_fork_connector(p);
        cgroup_post_fork(p);
        cgroup_threadgroup_change_end(current);
        perf_event_fork(p);
    ​
        trace_task_newtask(p, clone_flags);
        uprobe_copy_process(p, clone_flags);
    ​
        return p;
    ​
    bad_fork_cancel_cgroup:
        spin_unlock(&current->sighand->siglock);
        write_unlock_irq(&tasklist_lock);
        cgroup_cancel_fork(p);
    bad_fork_cgroup_threadgroup_change_end:
        cgroup_threadgroup_change_end(current);
    bad_fork_put_pidfd:
        if (clone_flags & CLONE_PIDFD) {
            fput(pidfile);
            put_unused_fd(pidfd);
        }
    bad_fork_free_pid:
        if (pid != &init_struct_pid)
            free_pid(pid);
    bad_fork_cleanup_thread:
        exit_thread(p);
    bad_fork_cleanup_io:
        if (p->io_context)
            exit_io_context(p);
    bad_fork_cleanup_namespaces:
        exit_task_namespaces(p);
    bad_fork_cleanup_mm:
        if (p->mm) {
            mm_clear_owner(p->mm, p);
            mmput(p->mm);
        }
    bad_fork_cleanup_signal:
        if (!(clone_flags & CLONE_THREAD))
            free_signal_struct(p->signal);
    bad_fork_cleanup_sighand:
        __cleanup_sighand(p->sighand);
    bad_fork_cleanup_fs:
        exit_fs(p); /* blocking */
    bad_fork_cleanup_files:
        exit_files(p); /* blocking */
    bad_fork_cleanup_semundo:
        exit_sem(p);
    bad_fork_cleanup_security:
        security_task_free(p);
    bad_fork_cleanup_audit:
        audit_free(p);
    bad_fork_cleanup_perf:
        perf_event_free_task(p);
    bad_fork_cleanup_policy:
        lockdep_free_task(p);
    #ifdef CONFIG_NUMA
        mpol_put(p->mempolicy);
    bad_fork_cleanup_threadgroup_lock:
    #endif
        delayacct_tsk_free(p);
    bad_fork_cleanup_count:
        atomic_dec(&p->cred->user->processes);
        exit_creds(p);
    bad_fork_free:
        p->state = TASK_DEAD;
        put_task_stack(p);
        delayed_free_task(p);
    fork_out:
        spin_lock_irq(&current->sighand->siglock);
        hlist_del_init(&delayed.node);
        spin_unlock_irq(&current->sighand->siglock);
        return ERR_PTR(retval);
    }
    

    dup_task_struct

    p = dup_task_struct(current, node);
    

    node == NUMA_NO_NODE
    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L859

    static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
    {
        struct task_struct *tsk;
        unsigned long *stack;
        struct vm_struct *stack_vm_area __maybe_unused;
        int err;
    ​
        if (node == NUMA_NO_NODE)
            node = tsk_fork_get_node(orig);
    /*
    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L167
    ​
    static struct kmem_cache *task_struct_cachep;
    static inline struct task_struct *alloc_task_struct_node(int node)
    {
        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
    }
    就是分配内存
    kmem_cache_alloc_node   如果指定的 NUMA 节点与本处理器所在节点不一致,则先从指定节点上获取 slab,替换处理器活动 slab,然后分配对象。
    */
        tsk = alloc_task_struct_node(node);
        if (!tsk)
            return NULL;
    /*
    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L305
    ​
    static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
                              int node)
    {
        unsigned long *stack;
        stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
        tsk->stack = stack;
        return stack;
    }
    给新进程分配栈内存
    */
        stack = alloc_thread_stack_node(tsk, node);
        if (!stack)
            goto free_tsk;
    ​
        // 源码有点长,放下面了
        if (memcg_charge_kernel_stack(tsk))
            goto free_stack;
    ​
        // return t->stack_vm_area; 获取 tsk 的 stack 的 vm_area
        stack_vm_area = task_stack_vm_area(tsk);
    ​
        // 重点,这里就是真正的复制父进程的 task_struct,其实源码很简单
    /*
    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L844
    ​
    int __weak arch_dup_task_struct(struct task_struct *dst,
                               struct task_struct *src)
    {
        *dst = *src;
        return 0;
    }
    orig 就是指向父进程的 task_struct 指针
    tsk  就是指向子进程的 task_struct 指针
    解引用,复制值
    */
        err = arch_dup_task_struct(tsk, orig);
    ​
        /*
         * arch_dup_task_struct() clobbers the stack-related fields.  Make
         * sure they're properly initialized before using any stack-related
         * functions again.
         */
        // 子进程肯定用的是自己的栈,没有这个一句子进程就会父进程共用一个栈
        // 这个就是为什么上面要分配内存,并取出这个两个字段
        tsk->stack = stack;
    #ifdef CONFIG_VMAP_STACK
        tsk->stack_vm_area = stack_vm_area;
    #endif
    #ifdef CONFIG_THREAD_INFO_IN_TASK
        refcount_set(&tsk->stack_refcount, 1);
    #endif
    ​
        if (err)
            goto free_stack;
    ​
    #ifdef CONFIG_SECCOMP
        /*
         * We must handle setting up seccomp filters once we're under
         * the sighand lock in case orig has changed between now and
         * then. Until then, filter must be NULL to avoid messing up
         * the usage counts on the error path calling free_task.
         */
        tsk->seccomp.filter = NULL;
    #endif
    ​
    /* 设置线程栈
       via:https://elixir.bootlin.com/linux/v5.6.14/source/include/linux/sched/task_stack.h#L24
       展开的源码是
    static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
    {
        *((struct thread_info *)(p)->stack) = *(((struct thread_info *)(org)->stack));
        (&p->thread_info)->task = p;
    }
    其实就是复制了父进程的 栈 ,然后设置子进程的 thread_info 的 task 字段
    这里补充一点:一个进程的 task_strcut 的 thread_info 字段存的是进程的 thread_info,然后 thread_info 里的 task 字段存的是进程的 task_struct
    */ 
        setup_thread_stack(tsk, orig);
        // 把进程加入调度队列(就是把 thread_info 的 标志位(flag) 设置成 TIF_NEED_RESCHED 1 (rescheduling necessary))
        clear_user_return_notifier(tsk);
        clear_tsk_need_resched(tsk);
    /*
    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L851
    ​
    #define STACK_END_MAGIC     0x57AC6E9D
    void set_task_stack_end_magic(struct task_struct *tsk)
    {
        unsigned long *stackend;
    ​
        stackend = end_of_stack(tsk);
        *stackend = STACK_END_MAGIC;    // for overflow detection
    }
    在栈底设置一个 魔数 以检测是否发生栈溢出(有点像 canary ,但是这个是固定的数,只是用来检测意外溢出,不是用来防止 overflow exploit)
    */
        set_task_stack_end_magic(tsk);
    ​
    #ifdef CONFIG_STACKPROTECTOR
        // 顾名思义,canary,随机数,详细算法
        // via:https://elixir.bootlin.com/linux/v5.6.14/source/drivers/char/random.c#L2162
        tsk->stack_canary = get_random_canary();
    #endif
        if (orig->cpus_ptr == &orig->cpus_mask)
            tsk->cpus_ptr = &tsk->cpus_mask;
    ​
        /*
         * One for the user space visible state that goes away when reaped.
         * One for the scheduler.
         */
        refcount_set(&tsk->rcu_users, 2);
        /* One for the rcu users */
        refcount_set(&tsk->usage, 1);
    #ifdef CONFIG_BLK_DEV_IO_TRACE
        tsk->btrace_seq = 0;
    #endif
        tsk->splice_pipe = NULL;
        tsk->task_frag.page = NULL;
        tsk->wake_q.next = NULL;
    ​
        account_kernel_stack(tsk, 1);
    ​
        kcov_task_init(tsk);
    ​
    #ifdef CONFIG_FAULT_INJECTION
        tsk->fail_nth = 0;
    #endif
    ​
    #ifdef CONFIG_BLK_CGROUP
        tsk->throttle_queue = NULL;
        tsk->use_memdelay = 0;
    #endif
    ​
    #ifdef CONFIG_MEMCG
        tsk->active_memcg = NULL;
    #endif
        return tsk;
    ​
    free_stack:
        free_thread_stack(tsk);
    free_tsk:
        free_task_struct(tsk);
        return NULL;
    }
    

    memcg_charge_kernel_stack

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L405

    static int memcg_charge_kernel_stack(struct task_struct *tsk)
    {
    #ifdef CONFIG_VMAP_STACK
        struct vm_struct *vm = task_stack_vm_area(tsk);
        int ret;
    ​
        if (vm) {
            int i;
    ​
            for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
                /*
                 * If memcg_kmem_charge() fails, page->mem_cgroup
                 * pointer is NULL, and both memcg_kmem_uncharge()
                 * and mod_memcg_page_state() in free_thread_stack()
                 * will ignore this page. So it's safe.
                 */
                ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
                if (ret)
                    return ret;
    ​
                mod_memcg_page_state(vm->pages[i],
                             MEMCG_KERNEL_STACK_KB,
                             PAGE_SIZE / 1024);
            }
        }
    #endif
        return 0;
    }
    

    copy_creds

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/cred.c#L330

    /*
     * Copy credentials for the new process created by fork()
     *
     * We share if we can, but under some circumstances we have to generate a new
     * set.
     *
     * The new process gets the current process's subjective credentials as its
     * objective and subjective credentials
     */
    int copy_creds(struct task_struct *p, unsigned long clone_flags)
    {
        struct cred *new;
        int ret;
    ​
    #ifdef CONFIG_KEYS_REQUEST_CACHE
        p->cached_requested_key = NULL;
    #endif
    ​
        if (
    #ifdef CONFIG_KEYS
            !p->cred->thread_keyring &&
    #endif
            clone_flags & CLONE_THREAD
            ) {
            //设置 p 的 real cred 为 cred
            p->real_cred = get_cred(p->cred);
            get_cred(p->cred);
            alter_cred_subscribers(p->cred, 2);
            kdebug("share_creds(%p{%d,%d})",
                   p->cred, atomic_read(&p->cred->usage),
                   read_cred_subscribers(p->cred));
            // 原子性增加 p进程对应的 用户(其实是 ruid) 的进程数
            atomic_inc(&p->cred->user->processes);
            return 0;
        }
    ​
        // 官方注释:prepare_creds - Prepare a new set of credentials for modification
        // 详细分析见下面
        new = prepare_creds();
        if (!new)
            return -ENOMEM;
    ​
        // namespace 相关。要是指定用新用户的身份去启动子进程,就要修改 cred
        if (clone_flags & CLONE_NEWUSER) {
            // 
            ret = create_user_ns(new);
            if (ret < 0)
                goto error_put;
        }
    ​
    #ifdef CONFIG_KEYS
        /* new threads get their own thread keyrings if their parent already
         * had one */
        if (new->thread_keyring) {
            key_put(new->thread_keyring);
            new->thread_keyring = NULL;
            if (clone_flags & CLONE_THREAD)
                install_thread_keyring_to_cred(new);
        }
    ​
        /* The process keyring is only shared between the threads in a process;
         * anything outside of those threads doesn't inherit.
         */
        if (!(clone_flags & CLONE_THREAD)) {
            key_put(new->process_keyring);
            new->process_keyring = NULL;
        }
    #endif
    ​
        atomic_inc(&new->user->processes);
        p->cred = p->real_cred = get_cred(new);
        alter_cred_subscribers(new, 2);
        validate_creds(new);
        return 0;
    ​
    error_put:
        put_cred(new);
        return ret;
    }
    

    prepare_creds

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/cred.c#L250

    /**
     * prepare_creds - Prepare a new set of credentials for modification
     *
     * Prepare a new set of task credentials for modification.  A task's creds
     * shouldn't generally be modified directly, therefore this function is used to
     * prepare a new copy, which the caller then modifies and then commits by
     * calling commit_creds().
     *
     * Preparation involves making a copy of the objective creds for modification.
     *
     * Returns a pointer to the new creds-to-be if successful, NULL otherwise.
     *
     * Call commit_creds() or abort_creds() to clean up.
     */
    struct cred *prepare_creds(void)
    {
        //获取父进程的进程描述符指针(task_struct)
        struct task_struct *task = current;
        const struct cred *old;
        struct cred *new;
    ​
        validate_process_creds();
    ​
        // 分配内存
        new = kmem_cache_alloc(cred_jar, GFP_KERNEL);
        if (!new)
            return NULL;
    ​
        kdebug("prepare_creds() alloc %p", new);
    ​
        // 保存父进程的 cred
        old = task->cred;
        // 直接把父进程的 cred 拷贝给子进程
        memcpy(new, old, sizeof(struct cred));
    ​
        new->non_rcu = 0;
        atomic_set(&new->usage, 1);
        set_cred_subscribers(new, 0);
        
       // get_group_info(new->group_info); 相当于 atomic_inc(&gi->usage);
        get_group_info(new->group_info);
        // refcount_inc(&u->__count);
        get_uid(new->user);
    /*
    static inline struct user_namespace *get_user_ns(struct user_namespace *ns)
    {
        if (ns)
            atomic_inc(&ns->count);
        return ns;
    }
    namespace 相关
    */
        get_user_ns(new->user_ns);
    ​
    #ifdef CONFIG_KEYS
        key_get(new->session_keyring);
        key_get(new->process_keyring);
        key_get(new->thread_keyring);
        key_get(new->request_key_auth);
    #endif
    ​
    #ifdef CONFIG_SECURITY
        new->security = NULL;
    #endif
    ​
        if (security_prepare_creds(new, old, GFP_KERNEL_ACCOUNT) < 0)
            goto error;
        validate_creds(new);
        return new;
    ​
    error:
        abort_creds(new);
        return NULL;
    }
    EXPORT_SYMBOL(prepare_creds);
    

    create_user_ns

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/user_namespace.c#L69

    int create_user_ns(struct cred *new)
    {
        // 取出父进程的 user_namespace
        struct user_namespace *ns, *parent_ns = new->user_ns;
        // euid 用于系统决定用户对系统资源的权限。也就是说当用户做任何一个操作时,最终看它有没有权限
        kuid_t owner = new->euid;
        kgid_t group = new->egid;
        struct ucounts *ucounts;
        int ret, i;
    ​
        ret = -ENOSPC;
        // user ns 是可以层级关系的,但是最高不允许超过 32 层
        if (parent_ns->level > 32)
            goto fail;
    ​
        ucounts = inc_user_namespaces(parent_ns, owner);
        if (!ucounts)
            goto fail;
    ​
        /*
         * Verify that we can not violate the policy of which files
         * may be accessed that is specified by the root directory,
         * by verifing that the root directory is at the root of the
         * mount namespace which allows all files to be accessed.
         */
        ret = -EPERM;
        // 判断是不是 chroot 环境
        if (current_chrooted())
            goto fail_dec;
    ​
        /* The creator needs a mapping in the parent user namespace
         * or else we won't be able to reasonably tell userspace who
         * created a user_namespace.
         */
        ret = -EPERM;
        // 检查映射
        /*
        via:https://elixir.bootlin.com/linux/v5.6.14/source/include/linux/uidgid.h#L179
        via:https://elixir.bootlin.com/linux/v5.6.14/source/include/linux/uidgid.h#L111
        
        return __kuid_val(uid) != (uid_t) -1;
        这里的 -1 就是表示不映射
        */
        if (!kuid_has_mapping(parent_ns, owner) ||
            !kgid_has_mapping(parent_ns, group))
            goto fail_dec;
    ​
        ret = -ENOMEM;
        ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
        if (!ns)
            goto fail_dec;
    ​
        ret = ns_alloc_inum(&ns->ns);
        if (ret)
            goto fail_free;
        ns->ns.ops = &userns_operations;
    ​
        atomic_set(&ns->count, 1);
        /* Leave the new->user_ns reference with the new user namespace. */
        // 把子进程的 namespce 的 parent 字段设置为父进程的 namespace
        ns->parent = parent_ns;
        ns->level = parent_ns->level + 1;
        ns->owner = owner;
        ns->group = group;
        INIT_WORK(&ns->work, free_user_ns);
        for (i = 0; i < UCOUNT_COUNTS; i++) {
            ns->ucount_max[i] = INT_MAX;
        }
        ns->ucounts = ucounts;
    ​
        /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
        mutex_lock(&userns_state_mutex);
        ns->flags = parent_ns->flags;
        mutex_unlock(&userns_state_mutex);
    ​
    #ifdef CONFIG_KEYS
        INIT_LIST_HEAD(&ns->keyring_name_list);
        init_rwsem(&ns->keyring_sem);
    #endif
        ret = -ENOMEM;
        if (!setup_userns_sysctls(ns))
            goto fail_keyring;
    ​
        // 设置 crediential ,就是所谓的 cap
    /*
    static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
    {
        // Start with the same capabilities as init but useless for doing
        // anything as the capabilities are bound to the new user namespace.
        // 设置和 init 一样的权限,但是由于这些功能已绑定到新的用户 namespace ,因此这些权限只在用户命名空间有效。
        cred->securebits = SECUREBITS_DEFAULT;
        cred->cap_inheritable = CAP_EMPTY_SET;
        cred->cap_permitted = CAP_FULL_SET;
        cred->cap_effective = CAP_FULL_SET;
        cred->cap_ambient = CAP_EMPTY_SET;
        cred->cap_bset = CAP_FULL_SET;
    #ifdef CONFIG_KEYS
        key_put(cred->request_key_auth);
        cred->request_key_auth = NULL;
    #endif
        // tgcred will be cleared in our caller bc CLONE_THREAD won't be set 
        cred->user_ns = user_ns;
    }
    */
        set_cred_user_ns(new, ns);
        return 0;
    fail_keyring:
    #ifdef CONFIG_PERSISTENT_KEYRINGS
        key_put(ns->persistent_keyring_register);
    #endif
        ns_free_inum(&ns->ns);
    fail_free:
        kmem_cache_free(user_ns_cachep, ns);
    fail_dec:
        dec_user_namespaces(ucounts);
    fail:
        return ret;
    }
    

    copy_files

    复制父进程的 文件描述符

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L1449

    static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct files_struct *oldf, *newf;
    	int error = 0;
    	/*
    	 * A background process may not have any files ...
    	 */
        // 获取父进程的 files 结构体指针
    	oldf = current->files;
    	if (!oldf)
    		goto out;
    	if (clone_flags & CLONE_FILES) {
    		atomic_inc(&oldf->count);
    		goto out;
    	}
        // 直接用 dup_fd 复制
        // via:https://elixir.bootlin.com/linux/latest/source/fs/file.c#L272
    	newf = dup_fd(oldf, &error);
    	if (!newf)
    		goto out;
        // 更新子进程的 files 为父进程的  files_struct 的副本
    	tsk->files = newf;
    	error = 0;
    out:
    	return error;
    }
    

    copy_fs

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L1429

    static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct fs_struct *fs = current->fs;
    	if (clone_flags & CLONE_FS) {
    		/* tsk->fs is already what we want */
    		spin_lock(&fs->lock);
    		if (fs->in_exec) {
    			spin_unlock(&fs->lock);
    			return -EAGAIN;
    		}
    		fs->users++;
    		spin_unlock(&fs->lock);
    		return 0;
    	}
    	tsk->fs = copy_fs_struct(fs);
    	if (!tsk->fs)
    		return -ENOMEM;
    	return 0;
    }
    

    copy_fs_struct

    copy_fs 的实际操作

    struct fs_struct *copy_fs_struct(struct fs_struct *old)
    {
        // 分配内存
    	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
    	/* We don't need to lock fs - think why ;-) */
    	if (fs) {
    		fs->users = 1;
    		fs->in_exec = 0;
    		spin_lock_init(&fs->lock);
    		seqcount_init(&fs->seq);
            // 复制父进程的 umask 
    		fs->umask = old->umask;
    
    		spin_lock(&old->lock);
            // 根目录
    		fs->root = old->root;
    		path_get(&fs->root);
            // 当前目录
    		fs->pwd = old->pwd;
    		path_get(&fs->pwd);
    		spin_unlock(&old->lock);
    	}
    	return fs;
    }
    

    copy_mm

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L1382

    static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
    {
    	struct mm_struct *mm, *oldmm;
    	int retval;
    	tsk->min_flt = tsk->maj_flt = 0;
    	tsk->nvcsw = tsk->nivcsw = 0;
    #ifdef CONFIG_DETECT_HUNG_TASK
    	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
    	tsk->last_switch_time = 0;
    #endif
    	tsk->mm = NULL;
    	tsk->active_mm = NULL;
    	/*
    	 * Are we cloning a kernel thread?
    	 *
    	 * We need to steal a active VM for that..
    	 */
        // 获取父进程的 mm_struct(mm_struct 是用来描述进程的内存空间的)
    	oldmm = current->mm;
    	if (!oldmm)
    		return 0;
    	/* initialize the new vmacache entries */
    	vmacache_flush(tsk);
        // 如果子进程与父进程运行于相同的内存空间
    	if (clone_flags & CLONE_VM) {
    		mmget(oldmm); // &oldmm->mm_users 增加 1
    		mm = oldmm; // 直接让子进程的 mm_struct 指向父进程的 mm_struct
    		goto good_mm;
    	}
    	retval = -ENOMEM;
        // 复制父进程 mm_struct 的内容
    	mm = dup_mm(tsk, current->mm);
    	if (!mm)
    		goto fail_nomem;
    good_mm:
    	tsk->mm = mm;
    	tsk->active_mm = mm;
    	return 0;
    fail_nomem:
    	return retval;
    }
    

    dup _mm

    via:https://elixir.bootlin.com/linux/latest/source/kernel/fork.c#L1345

    static struct mm_struct *dup_mm(struct task_struct *tsk,
    				struct mm_struct *oldmm)
    {
    	struct mm_struct *mm;
    	int err;
    
    	mm = allocate_mm();
    	if (!mm)
    		goto fail_nomem;
    
        // 拷贝父进程的 mm 的内容到 子进程(不同于 CLONE_VM)
    	memcpy(mm, oldmm, sizeof(*mm));
    
        // 初始化 mm 的其他字段(我有点累暂时不看)
    	if (!mm_init(mm, tsk, mm->user_ns))
    		goto fail_nomem;
    
        // 拷贝父进程地址空间
    	err = dup_mmap(mm, oldmm);
    	if (err)
    		goto free_pt;
    
    	mm->hiwater_rss = get_mm_rss(mm);
    	mm->hiwater_vm = mm->total_vm;
    
    	if (mm->binfmt && !try_module_get(mm->binfmt->module))
    		goto free_pt;
    
    	return mm;
    
    free_pt:
    	/* don't put binfmt in mmput, we haven't got module yet */
    	mm->binfmt = NULL;
    	mm_init_owner(mm, NULL);
    	mmput(mm);
    
    fail_nomem:
    	return NULL;
    }
    

    dup_mmap

    拷贝父进程地址空间

    via:https://elixir.bootlin.com/linux/latest/source/kernel/fork.c#L481

    static __latent_entropy int dup_mmap(struct mm_struct *mm,
    					struct mm_struct *oldmm)
    {
    	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
    	struct rb_node **rb_link, *rb_parent;
    	int retval;
    	unsigned long charge;
    	LIST_HEAD(uf);
    
    	uprobe_start_dup_mmap();
        // 获取 线性区 的信号量
    	if (down_write_killable(&oldmm->mmap_sem)) {
    		retval = -EINTR;
    		goto fail_uprobe_end;
    	}
    	flush_cache_dup_mm(oldmm);
    	uprobe_dup_mmap(oldmm, mm);
    	/*
    	 * Not linked in yet - no deadlock potential:
    	 */
    	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
    
    	/* No ordering required: file already has been exposed. */
    	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
    
    	mm->total_vm = oldmm->total_vm; // 复制父进程的进程地址空间的的页数
    	mm->data_vm = oldmm->data_vm;
    	mm->exec_vm = oldmm->exec_vm; // 复制父进程的可执行内存映射中的页数
    	mm->stack_vm = oldmm->stack_vm;// 复制父进程的用户态栈堆中的页数
    
        // 红黑树。。。。
        // rblink 存的是 VMA 的根节点
    	rb_link = &mm->mm_rb.rb_node;
    	rb_parent = NULL;
    	pprev = &mm->mmap;
    	retval = ksm_fork(mm, oldmm);
    	if (retval)
    		goto out;
    	retval = khugepaged_fork(mm, oldmm);
    	if (retval)
    		goto out;
    
    	prev = NULL;
        // 遍历父进程的 VMA
    	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
    		struct file *file;
    
            // VM_DONTCOPY 在 fork 系统调用执行时不复制
    		if (mpnt->vm_flags & VM_DONTCOPY) {
                // 见下面
    			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
    			continue;
    		}
    		charge = 0;
    		/*
    		 * Don't duplicate many vmas if we've been oom-killed (for
    		 * example)
    		 */
    		if (fatal_signal_pending(current)) {
    			retval = -EINTR;
    			goto out;
    		}
            // VM_ACCOUNT
    		if (mpnt->vm_flags & VM_ACCOUNT) {
    			unsigned long len = vma_pages(mpnt);
    
    			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
    				goto fail_nomem;
    			charge = len;
    		}
    		tmp = vm_area_dup(mpnt);
    		if (!tmp)
    			goto fail_nomem;
    		retval = vma_dup_policy(mpnt, tmp);
    		if (retval)
    			goto fail_nomem_policy;
    		tmp->vm_mm = mm;
    		retval = dup_userfaultfd(tmp, &uf);
    		if (retval)
    			goto fail_nomem_anon_vma_fork;
    		if (tmp->vm_flags & VM_WIPEONFORK) {
    			/* VM_WIPEONFORK gets a clean slate in the child. */
    			tmp->anon_vma = NULL;
    			if (anon_vma_prepare(tmp))
    				goto fail_nomem_anon_vma_fork;
    		} else if (anon_vma_fork(tmp, mpnt))
    			goto fail_nomem_anon_vma_fork;
    		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
    		tmp->vm_next = tmp->vm_prev = NULL;
    		file = tmp->vm_file;
    		if (file) {
    			struct inode *inode = file_inode(file);
    			struct address_space *mapping = file->f_mapping;
    
    			get_file(file);
    			if (tmp->vm_flags & VM_DENYWRITE)
    				atomic_dec(&inode->i_writecount);
    			i_mmap_lock_write(mapping);
    			if (tmp->vm_flags & VM_SHARED)
    				atomic_inc(&mapping->i_mmap_writable);
    			flush_dcache_mmap_lock(mapping);
    			/* insert tmp into the share list, just after mpnt */
    			vma_interval_tree_insert_after(tmp, mpnt,
    					&mapping->i_mmap);
    			flush_dcache_mmap_unlock(mapping);
    			i_mmap_unlock_write(mapping);
    		}
    
    		/*
    		 * Clear hugetlb-related page reserves for children. This only
    		 * affects MAP_PRIVATE mappings. Faults generated by the child
    		 * are not guaranteed to succeed, even if read-only
    		 */
    		if (is_vm_hugetlb_page(tmp))
    			reset_vma_resv_huge_pages(tmp);
    
    		/*
    		 * Link in the new vma and copy the page table entries.
    		 */
    		*pprev = tmp;
    		pprev = &tmp->vm_next;
    		tmp->vm_prev = prev;
    		prev = tmp;
    
    		__vma_link_rb(mm, tmp, rb_link, rb_parent);
    		rb_link = &tmp->vm_rb.rb_right;
    		rb_parent = &tmp->vm_rb;
    
            // 这里就是 fork 写时复制(COW)在 copy_page_range 里面
    		mm->map_count++;
    		if (!(tmp->vm_flags & VM_WIPEONFORK))
    			retval = copy_page_range(mm, oldmm, mpnt);
    
    		if (tmp->vm_ops && tmp->vm_ops->open)
    			tmp->vm_ops->open(tmp);
    
    		if (retval)
    			goto out;
    	}
    	/* a new mm has just been created */
    	retval = arch_dup_mmap(oldmm, mm);
    out:
    	up_write(&mm->mmap_sem);
    	flush_tlb_mm(oldmm);
    	up_write(&oldmm->mmap_sem);
    	dup_userfaultfd_complete(&uf);
    fail_uprobe_end:
    	uprobe_end_dup_mmap();
    	return retval;
    fail_nomem_anon_vma_fork:
    	mpol_put(vma_policy(tmp));
    fail_nomem_policy:
    	vm_area_free(tmp);
    fail_nomem:
    	retval = -ENOMEM;
    	vm_unacct_memory(charge);
    	goto out;
    }
    

    vm_stat_account

    via:https://elixir.bootlin.com/linux/latest/source/mm/mmap.c#L3287

    void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
    {
    	mm->total_vm += npages;
    
        // return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
    	if (is_exec_mapping(flags))
    		mm->exec_vm += npages;
        // return (flags & VM_STACK) == VM_STACK;
    	else if (is_stack_mapping(flags))
    		mm->stack_vm += npages;
        // return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
    	else if (is_data_mapping(flags))
    		mm->data_vm += npages;
    }
    

    copy_page_range

    fork 的写时复制的核心

    int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		struct vm_area_struct *vma)
    {
    	pgd_t *src_pgd, *dst_pgd;
    	unsigned long next;
        // 获得 vma 的起始地址和 结束地址
    	unsigned long addr = vma->vm_start;
    	unsigned long end = vma->vm_end;
    	struct mmu_notifier_range range;
    	bool is_cow;
    	int ret;
    
    	/*
    	 * Don't copy ptes where a page fault will fill them correctly.
    	 * Fork becomes much lighter when there are big shared or private
    	 * readonly mappings. The tradeoff is that copy_page_range is more
    	 * efficient than faulting.
    	 */
        /*
        VM_HUGETLB 巨型页
        VM_PFNMAP  Page-ranges 管理没有 struct page,只有 PFN pages
        VM_MIXEDMAP 可以包含 struct page 和 PFN pages
        */
    	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
    			!vma->anon_vma)
    		return 0;
    
        // return !!(vma->vm_flags & VM_HUGETLB);
    	if (is_vm_hugetlb_page(vma))
    		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
    
    	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
    		/*
    		 * We do not free on error cases below as remove_vma
    		 * gets called on error from higher level routine
    		 */
    		ret = track_pfn_copy(vma);
    		if (ret)
    			return ret;
    	}
    
    	/*
    	 * We need to invalidate the secondary MMU mappings only when
    	 * there could be a permission downgrade on the ptes of the
    	 * parent mm. And a permission downgrade will only happen if
    	 * is_cow_mapping() returns true.
    	 */
        // return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
    	is_cow = is_cow_mapping(vma->vm_flags);
    
    	if (is_cow) {
    		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
    					0, vma, src_mm, addr, end);
    		mmu_notifier_invalidate_range_start(&range);
    	}
    
    	ret = 0;
    	dst_pgd = pgd_offset(dst_mm, addr);
    	src_pgd = pgd_offset(src_mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		if (pgd_none_or_clear_bad(src_pgd))
    			continue;
    		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
    					    vma, addr, next))) {
    			ret = -ENOMEM;
    			break;
    		}
    	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
    
    	if (is_cow)
    		mmu_notifier_invalidate_range_end(&range);
    	return ret;
    }
    

    copy_namespaces

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/nsproxy.c#L149

    /*
     * called from clone.  This now handles copy for nsproxy and all
     * namespaces therein.
     */
    int copy_namespaces(unsigned long flags, struct task_struct *tsk)
    {
    	struct nsproxy *old_ns = tsk->nsproxy;
    	struct user_namespace *user_ns = task_cred_xxx(tsk, user_ns);
    	struct nsproxy *new_ns;
    	int ret;
    	if (likely(!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC |
    			      CLONE_NEWPID | CLONE_NEWNET |
    			      CLONE_NEWCGROUP | CLONE_NEWTIME)))) {
    		if (likely(old_ns->time_ns_for_children == old_ns->time_ns)) {
    			get_nsproxy(old_ns);
    			return 0;
    		}
    	} else if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    		return -EPERM;
    	/*
    	 * CLONE_NEWIPC must detach from the undolist: after switching
    	 * to a new ipc namespace, the semaphore arrays from the old
    	 * namespace are unreachable.  In clone parlance, CLONE_SYSVSEM
    	 * means share undolist with parent, so we must forbid using
    	 * it along with CLONE_NEWIPC.
    	 */
    	if ((flags & (CLONE_NEWIPC | CLONE_SYSVSEM)) ==
    		(CLONE_NEWIPC | CLONE_SYSVSEM)) 
    		return -EINVAL;
    	new_ns = create_new_namespaces(flags, tsk, user_ns, tsk->fs);
    	if (IS_ERR(new_ns))
    		return  PTR_ERR(new_ns);
    	ret = timens_on_fork(new_ns, tsk);
    	if (ret) {
    		free_nsproxy(new_ns);
    		return ret;
    	}
    	tsk->nsproxy = new_ns;
    	return 0;
    }
    

    copy_io

    via:https://elixir.bootlin.com/linux/v5.6.14/source/kernel/fork.c#L1476

    static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
    {
    #ifdef CONFIG_BLOCK
    	struct io_context *ioc = current->io_context;
    	struct io_context *new_ioc;
    	if (!ioc)
    		return 0;
    	/*
    	 * Share io context with parent, if CLONE_IO is set
    	 */
    	if (clone_flags & CLONE_IO) {
    		ioc_task_link(ioc);
    		tsk->io_context = ioc;
    	} else if (ioprio_valid(ioc->ioprio)) {
    		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
    		if (unlikely(!new_ioc))
    			return -ENOMEM;
    		new_ioc->ioprio = ioc->ioprio;
    		put_io_context(new_ioc);
    	}
    #endif
    	return 0;
    }
    

    copy_thread_tls

    via:https://elixir.bootlin.com/linux/v5.6.14/source/arch/x86/kernel/process.c#L125

    nt copy_thread_tls(unsigned long clone_flags, unsigned long sp,
    		    unsigned long arg, struct task_struct *p, unsigned long tls)
    {
    	struct inactive_task_frame *frame;
    	struct fork_frame *fork_frame;
    	struct pt_regs *childregs;
    	int ret = 0;
    	childregs = task_pt_regs(p);
    	fork_frame = container_of(childregs, struct fork_frame, regs);
    	frame = &fork_frame->frame;
    	frame->bp = 0;
    	frame->ret_addr = (unsigned long) ret_from_fork;
    	p->thread.sp = (unsigned long) fork_frame;
    	p->thread.io_bitmap = NULL;
    	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
    #ifdef CONFIG_X86_64
    	savesegment(gs, p->thread.gsindex);
    	p->thread.gsbase = p->thread.gsindex ? 0 : current->thread.gsbase;
    	savesegment(fs, p->thread.fsindex);
    	p->thread.fsbase = p->thread.fsindex ? 0 : current->thread.fsbase;
    	savesegment(es, p->thread.es);
    	savesegment(ds, p->thread.ds);
    #else
    	p->thread.sp0 = (unsigned long) (childregs + 1);
    	/*
    	 * Clear all status flags including IF and set fixed bit. 64bit
    	 * does not have this initialization as the frame does not contain
    	 * flags. The flags consistency (especially vs. AC) is there
    	 * ensured via objtool, which lacks 32bit support.
    	 */
    	frame->flags = X86_EFLAGS_FIXED;
    #endif
    	/* Kernel thread ? */
    	if (unlikely(p->flags & PF_KTHREAD)) {
    		memset(childregs, 0, sizeof(struct pt_regs));
    		kthread_frame_init(frame, sp, arg);
    		return 0;
    	}
    	frame->bx = 0;
    	*childregs = *current_pt_regs();
    	childregs->ax = 0;
    	if (sp)
    		childregs->sp = sp;
    #ifdef CONFIG_X86_32
    	task_user_gs(p) = get_user_gs(current_pt_regs());
    #endif
    	/* Set a new TLS for the child thread? */
    	if (clone_flags & CLONE_SETTLS)
    		ret = set_new_tls(p, tls);
    	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
    		io_bitmap_share(p);
    	return ret;
    }
    

    参考资料

    via:https://www.cnblogs.com/qiuheng/p/5749366.html

    via:https://www.jianshu.com/p/3035f2be3ef0

    via:https://www.cnblogs.com/nufangrensheng/p/3509262.html

    via:https://www.ibm.com/developerworks/cn/linux/l-cn-cncrrc-mngd-wkq/

    via:https://www.jianshu.com/p/691d02380312

    via:https://www.cnblogs.com/wanghetao/archive/2011/11/06/2237931.html

    via:https://www.cnblogs.com/holyxp/p/10016582.html

  • 相关阅读:
    裸裸的spfa~嘿嘿嘿!
    睡前1小时数学系列之-整除
    拓扑排序1.奖金
    拓扑排序
    SCU 1095运送物资(最短路)
    POJ1158 城市交通Traffic lights IOI 1999 (最短路)
    POI0109 POD (最短路)
    HN0I2000最优乘车 (最短路变形)
    FOJ1205 小鼠迷宫问题 (BFD+递推)
    CJOI 05新年好 (最短路+枚举)
  • 原文地址:https://www.cnblogs.com/crybaby/p/12938807.html
Copyright © 2011-2022 走看看