zoukankan      html  css  js  c++  java
  • Lecture1 线性回归

    1.基础

      先举房屋价面积x与房屋价格y间关系的例子,给出一系列数据集,数据集中包含不同房屋的面积与其对应价格,通过学习,得到一种算法,该算法可根据输入的房屋面积x,自动预测出价格y.

    1) 假设函数hhypothesis),经由学习算法在训练集上产生,输入x,产生估算的结果

    2) 代价函数(cost function):即训练误差,在训练模型过程中需要合理选择模型的参数,使得训练结果尽可能符合数据集。

     

    2.单变量线性回归

    2.1梯度下降法

    假设函数:$h_{ heta }= heta _{0}+ heta _{1}x$

    参数:$theta _{0},theta _{1}$

    代价函数:$Jleft ( heta_{0}, heta_{1} ight )=frac{1}{2m}sum_{i=1}^{m}left ( h_{ heta }left ( x^{left ( i ight )} ight )-y^{left ( i ight )} ight )$

    目标:调整$theta _{0},theta _{1}$,获得最小化的$Jleft ( heta_{0}, heta_{1} ight )$

    算法:

    外层迭代{

      $ heta_{j}:= heta_{j}-alphafrac{partial }{partial heta_{j}}Jleft ( heta_{0}, heta_{1} ight )  (for j=0 and j=1)$

    }

      注意:1.所有的theta应同步更新(每次迭代中,中间用变量替代,最后再统一更新theta)

         2.$alpha$为学习率,即梯度下降法中梯度下降的快慢

    3.多变量线性回归

     3.1梯度下降法

      3.1.1 introduce

      类似与单变量线性回归中的梯度下降法,不同点是中间计算过程把参数和x,y都向量化。

    $ heta_{j}= egin{matrix}theta_{1}\theta_{2}\.\.\.\theta_{n}end{matrix}$    $x_{j}= egin{matrix}x_{1}\x_{2}\.\.\.\x_{n}end{matrix}$

    单变量与多变量迭代算法对比:

     

    3.1.2 多变量梯度下降需注意的问题

      1.特征缩放。

      目的:统一各个特征的刻度,试制分布的范围接近[-1,1]。

      方法:$x=frac{x-mu }{size}$

      

      2.学习率

      $alpha$过低:训练慢

      $alpha$过高:有可能造成迭代时,代价函数反而增大

      选择学习率原则:0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1...

    3.2 正规方程

      一种寻找合适参数$ heta$的直接方法,不需要设置学习率也不需要迭代,但是在n>106时运行速度不足。

      

  • 相关阅读:
    wordpress取文章时间
    一个链接引发的血案---------服务器 IO及网络流量暴涨解决历程
    wordpres 自定义comment样式
    HTML中head里的内容经浏览器解析后全到body里了
    mir9-lua——《热血沙城》45度ARPG手游-Lua移植版
    MoonWarriors-lua——《雷电战机》游戏-Lua移植版
    《QQ欢乐斗地主》山寨版
    最好的ie版本检测方式
    css 超出部分显示省略号
    分享一个jquery插件,弥补一下hover事件的小小不足
  • 原文地址:https://www.cnblogs.com/cs-zzc/p/11296284.html
Copyright © 2011-2022 走看看