zoukankan      html  css  js  c++  java
  • 爬虫大作业

    选一个自己感兴趣的主题或网站。

    2.用python 编写爬虫程序,从网络上爬取相关主题的数据。

    3.对爬了的数据进行文本分析,生成词云。

    4.对文本分析结果进行解释说明。

    5.写一篇完整的博客,描述上述实现过程、遇到的问题及解决办法、数据分析思想及结论。

    6.最后提交爬取的全部数据、爬虫及数据分析源代码。

    #-*- coding: UTF-8 -*-
    import requests
    import re
    import pandas
    from bs4 import BeautifulSoup
    import datetime
    import time
    import pymysql
    import matplotlib.pyplot as plt
    import jieba.analyse
    from wordcloud import WordCloud,ImageColorGenerator
    import numpy as np
    from PIL import Image,ImageSequence
    from os import path
    
    def writeNewsDetail(content):
        f = open('fly.txt','a',encoding='utf-8')
        f.write(content)
        f.close()
    
    
    def getNewDetail(newsUrl):
        resd = requests.get(newsUrl)
        resd.encoding = 'utf-8'
        soupd = BeautifulSoup(resd.text, 'html.parser')
        # print(resd.text)
        content = soupd.select('.conTxt #fontzoom p')
        a = int(len(content))
        for i in range(0,int(len(content))):
            f = open('fly.txt', 'a', encoding='utf-8')
            f.write(content[i].text)
            f.write("
    ")
            f.close()
    
    
    
        # news = {}
        # news['标题'] = soupd.select('.headline')[0].text.strip()
        # info = soupd.select('.artical-info')[0].text
        # if info.find('来源:') > 0:
        #     news['来源'] = info[info.find('来源:'):].split()[0].lstrip('来源:')
        # news['发布时间'] = datetime.strptime(info.lstrip(' ')[-23:-1].strip(), '%Y-%m-%d %H:%M:%S')
        # news['编辑'] = soupd.select('#editor_baidu')[0].text.strip(')').split(':')[1]
        # news['链接'] = newsUrl
        # fly = soupd.select('.artical-main-content')[0].text.strip()
        # writeNewsDetail(fly)
        # return news
    
    newsurl = 'http://www.raoping.gov.cn/Item/33226.aspx'
    getNewDetail(newsurl)
    
    lyric = ''
    f = open('fly.txt', 'r',encoding='utf-8')
    for i in f:
        lyric += f.read()
    result = jieba.analyse.textrank(lyric, topK=50, withWeight=True)
    keywords = dict()
    for i in result:
        keywords[i[0]] = i[1]
    print(keywords)
    image = Image.open('001.jpg')
    graph = np.array(image)
    wc = WordCloud(font_path='./fonts/simhei.ttf', background_color='White', max_words=50, mask=graph)
    wc.generate_from_frequencies(keywords)
    image_color = ImageColorGenerator(graph)
    plt.imshow(wc)
    plt.imshow(wc.recolor(color_func=image_color))
    plt.axis("off")
    plt.show()
    wc.to_file('dd.jpg')

  • 相关阅读:
    数据库
    用hosts管理IP和域名
    软件测试周期
    jdk安装、环境配置
    IntelliJ IDEA 下载、安装、破解及卸载
    Servlet线程
    servlet什么时候被实例化?【转】
    JSP转译成Servlet详细过程【转】
    电脑使用--快捷键等【转】
    api大全
  • 原文地址:https://www.cnblogs.com/cs007/p/8934056.html
Copyright © 2011-2022 走看看