zoukankan      html  css  js  c++  java
  • 爬虫大作业

    选一个自己感兴趣的主题或网站。

    2.用python 编写爬虫程序,从网络上爬取相关主题的数据。

    3.对爬了的数据进行文本分析,生成词云。

    4.对文本分析结果进行解释说明。

    5.写一篇完整的博客,描述上述实现过程、遇到的问题及解决办法、数据分析思想及结论。

    6.最后提交爬取的全部数据、爬虫及数据分析源代码。

    #-*- coding: UTF-8 -*-
    import requests
    import re
    import pandas
    from bs4 import BeautifulSoup
    import datetime
    import time
    import pymysql
    import matplotlib.pyplot as plt
    import jieba.analyse
    from wordcloud import WordCloud,ImageColorGenerator
    import numpy as np
    from PIL import Image,ImageSequence
    from os import path
    
    def writeNewsDetail(content):
        f = open('fly.txt','a',encoding='utf-8')
        f.write(content)
        f.close()
    
    
    def getNewDetail(newsUrl):
        resd = requests.get(newsUrl)
        resd.encoding = 'utf-8'
        soupd = BeautifulSoup(resd.text, 'html.parser')
        # print(resd.text)
        content = soupd.select('.conTxt #fontzoom p')
        a = int(len(content))
        for i in range(0,int(len(content))):
            f = open('fly.txt', 'a', encoding='utf-8')
            f.write(content[i].text)
            f.write("
    ")
            f.close()
    
    
    
        # news = {}
        # news['标题'] = soupd.select('.headline')[0].text.strip()
        # info = soupd.select('.artical-info')[0].text
        # if info.find('来源:') > 0:
        #     news['来源'] = info[info.find('来源:'):].split()[0].lstrip('来源:')
        # news['发布时间'] = datetime.strptime(info.lstrip(' ')[-23:-1].strip(), '%Y-%m-%d %H:%M:%S')
        # news['编辑'] = soupd.select('#editor_baidu')[0].text.strip(')').split(':')[1]
        # news['链接'] = newsUrl
        # fly = soupd.select('.artical-main-content')[0].text.strip()
        # writeNewsDetail(fly)
        # return news
    
    newsurl = 'http://www.raoping.gov.cn/Item/33226.aspx'
    getNewDetail(newsurl)
    
    lyric = ''
    f = open('fly.txt', 'r',encoding='utf-8')
    for i in f:
        lyric += f.read()
    result = jieba.analyse.textrank(lyric, topK=50, withWeight=True)
    keywords = dict()
    for i in result:
        keywords[i[0]] = i[1]
    print(keywords)
    image = Image.open('001.jpg')
    graph = np.array(image)
    wc = WordCloud(font_path='./fonts/simhei.ttf', background_color='White', max_words=50, mask=graph)
    wc.generate_from_frequencies(keywords)
    image_color = ImageColorGenerator(graph)
    plt.imshow(wc)
    plt.imshow(wc.recolor(color_func=image_color))
    plt.axis("off")
    plt.show()
    wc.to_file('dd.jpg')

  • 相关阅读:
    xfce4-windowck-plugin的替代品
    git使用Beyond Compare作为diff和merge工具
    Visual Studio设置多个快捷键
    scrapy参数-COOKIES_ENABLED 最权威解释, 帮你避坑
    Linux基础使用
    python 所有的库整理
    Nginx配置详解
    15个常用的javaScript正则表达式
    Redis开发建议
    mysql 同步大量数据小技巧
  • 原文地址:https://www.cnblogs.com/cs007/p/8934056.html
Copyright © 2011-2022 走看看